Both tetrel and pnicogen bonds are known to be induced through σ-/π-holes. This work reports computational and experimental evidence of the carbonyl carbon of acetone hosting a tetrel bond by rather electrostatic forces, for the first time, while phosphorus of POCl sustains pnicogen bonding via the σ-hole. Heterodimers of POCl with acetone (CHCOCH) have been isolated within inert gas matrixes of Ar and N at 12 K.
View Article and Find Full Text PDFThe role of nitrogen, the first member of the pnicogen group, as an electron donor in hypervalent non-covalent interactions has been established long ago, while observation of its electron accepting capability is still elusive experimentally, and remains quite intriguing, conceptually. In the light of minimal computational exploration of this novel class of pnicogen bonding so far, the present work provides experimental proof with unprecedented clarity, for the existence of N(acceptor)N(donor) interaction using the model nitromethane (NM) molecule with ammonia (AM) as a Lewis base in NM-AM aggregates. The NM-AM dimer, in which the nitrogen atom of NM (as a unique pnicogen) accepts electrons from AM (the traditional electron donor), was synthesized at low temperatures under isolated conditions within inert gas matrixes and was characterized using infrared spectroscopy.
View Article and Find Full Text PDFThe branching of a methyl group in a linear chain has a profound influence on the conformational morphology as it wields a strong control in reducing a large number of conformations. To unravel the effect of branching on the second non-hyperconjugative carbon atom on the conformational landscape, the conformations of tris(2-methylbutyl)phosphate (T2MBP) were studied using Density Functional Theory (DFT) computations and matrix isolation infrared spectroscopy. Experimentally, T2MBP along with N/Ar/Kr/Xe gases was effusively expanded and deposited at a low temperature of 12 K, which was subsequently probed using infrared spectroscopy.
View Article and Find Full Text PDFAlbeit the first account of hypervalentπ interactions has been reported with halogenπ interactions, the feasibility of their extension to other hypervalent atoms as possible Lewis acids is still open. In this work, the role of phosphorus as an acceptor from the π electron cloud (Pπ pnicogen or phosphorus bonding) in PCl3-C2H2 and PCl3-C2H4 heterodimers is explored, by combining matrix isolation infrared spectroscopy with ab initio and DFT computational methodologies. The respective potential energy surfaces of the PCl3-C2H2 and PCl3-C2H4 heterodimers reveal unique minima stabilized by a concert of reasonably strong to weak interactions, of which Pπ phosphorus bonding was energetically dominant.
View Article and Find Full Text PDF