Publications by authors named "Suryadeep Dash"

The pretectum of vertebrates contains neurons responsive to global visual motion. These signals are sent to the cerebellum, forming a subcortical pathway for processing optic flow. Global motion neurons exhibit selectivity for both direction and speed, but this is usually assessed by first determining direction preference at intermediate velocity (16-32°/s) and then assessing speed tuning at the preferred direction.

View Article and Find Full Text PDF

Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomic, physiological, and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior.

View Article and Find Full Text PDF

Saccades require a spatiotemporal transformation of activity between the intermediate layers of the superior colliculus (iSC) and downstream brainstem burst generator. The dynamic linear ensemble-coding model (Goossens and Van Opstal 2006) proposes that each iSC spike contributes a fixed mini-vector to saccade displacement. Although biologically-plausible, this model assumes cortical areas like the frontal eye fields (FEF) simply provide the saccadic goal to be executed by the iSC and brainstem burst generator.

View Article and Find Full Text PDF

Express saccades are a manifestation of a visual grasp reflex triggered when visual information arrives in the intermediate layers of the superior colliculus (SCi), which in turn orchestrates the lower level brainstem saccade generator to evoke a saccade with a very short latency (~100 ms or less). A prominent theory regarding express saccades generation is that they are facilitated by preparatory signals, presumably from cortical areas, which prime the SCi before the arrival of visual information. Here, we test this theory by reversibly inactivating a key cortical input to the SCi, the frontal eye fields (FEF), while monkeys perform an oculomotor task that promotes express saccades.

View Article and Find Full Text PDF

A neural correlate for saccadic reaction times (SRTs) in the gap saccade task is the level of low-frequency activity in the intermediate layers of the superior colliculus (iSC) just before visual target onset: greater levels of such iSC low-frequency activity precede shorter SRTs. The frontal eye fields (FEFs) are one likely source of iSC preparatory activity, since FEF preparatory activity is also inversely related to SRT. To better understand the FEF's role in saccade preparation, and the way in which such preparation relates to SRT, in two male rhesus monkeys, we compared iSC preparatory activity across unilateral reversible cryogenic inactivation of the FEF.

View Article and Find Full Text PDF

Stochastic accumulator models provide a comprehensive framework for how neural activity could produce behavior. Neural activity within the frontal eye fields (FEFs) and intermediate layers of the superior colliculus (iSC) support such models for saccade initiation by relating variations in saccade reaction time (SRT) to variations in such parameters as baseline, rate of accumulation of activity, and threshold. Here, by recording iSC activity during reversible cryogenic inactivation of the FEF in four male nonhuman primates, we causally tested which parameter(s) best explains concomitant increases in SRT.

View Article and Find Full Text PDF

Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades.

View Article and Find Full Text PDF

In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit.

View Article and Find Full Text PDF

In realistic environments, keeping track of multiple visual targets during eye movements likely involves an interaction between vision, top-down spatial attention, memory, and self-motion information. Recently we found that the superior colliculus (SC) visual memory response is attention-sensitive and continuously updated relative to gaze direction. In that study, animals were trained to remember the location of a saccade target across an intervening smooth pursuit (SP) eye movement (Dash et al.

View Article and Find Full Text PDF

Background: Primates can remember and spatially update the visual direction of previously viewed objects during various types of self-motion. It is known that the brain "remaps" visual memory traces relative to gaze just before and after, but not during, discrete gaze shifts called saccades. However, it is not known how visual memory is updated during slow, continuous motion of the eyes.

View Article and Find Full Text PDF

In order to ameliorate the consequences of ego motion for vision, human and nonhuman observers generate reflexive, compensatory eye movements based on visual as well as vestibular information, helping to stabilize the images of visual scenes on the retina despite ego motion. And in order to fully exploit the advantages of foveal vision, they make saccades to shift the image of an object onto the fovea and smooth pursuit eye movements to stabilize it there despite continuing object movement relative to the observer. With the exception of slow visually driven eye movements, which can be understood as manifestations of relatively straightforward feedback systems, most eye movements require a direct conversion of sensory input into appropriate motor responses in the absence of immediate sensory feedback.

View Article and Find Full Text PDF

Smooth-pursuit adaptation (SPA) refers to the fact that pursuit gain in the early, still open-loop response phase of the pursuit eye movement can be adjusted based on experience. For instance, if the target moves initially at a constant velocity for ~100-200 ms and then steps to a higher velocity, subjects learn to up-regulate the pursuit gain associated with the initial target velocity (gain-increase SPA) in order to reduce the retinal error resulting from the velocity step. Correspondingly, a step to a lower target velocity leads to a decrease in gain (gain-decrease SPA).

View Article and Find Full Text PDF

Smooth pursuit adaptation (SPA) is an example of cerebellum-dependent motor learning that depends on the integrity of the oculomotor vermis (OMV). In an attempt to unveil the neuronal basis of the role of the OMV in SPA, we recorded Purkinje cell simple spikes (PC SS) of trained monkeys. Individual PC SS exhibited specific changes of their discharge patterns during the course of SPA.

View Article and Find Full Text PDF

Lesion studies suggest that the oculomotor vermis (OMV) is critical for the initiation of smooth-pursuit eye movements (SPEMs); yet, its specific role has remained elusive. In this study, we tested the hypothesis that vermal Purkinje cells (PCs) may be needed to fine-tune the kinematic description of SPEM initiation. Recording from identified PCs from the monkey OMV, we observed that SPEM-related PCs were characterized by a formidable diversity of response profiles with typically only modest reflection of eye movement kinematics.

View Article and Find Full Text PDF

Contemporary theories of the cerebellum hold that the complex spike (CS) fired by cerebellar Purkinje cells (PCs) reports the error signal essential for motor adaptation, i.e., the CS serves as a teacher reducing the performance error.

View Article and Find Full Text PDF

During pursuit eye movements, the world around us remains perceptually stable despite the retinal-image slip induced by the eye movement. It is commonly held that this perceptual invariance is achieved by subtracting an internal reference signal, reflecting the eye movement, from the retinal motion signal. However, if the reference signal is too small or too large, a false eye-movement-induced motion of the external world, the Filehne illusion (FI), will be perceived.

View Article and Find Full Text PDF

The anatomical organization of the granular layer of the cerebellum suggests an important function for Golgi cells (GC) in the pathway conveying mossy fiber (MF) afferents to Purkinje cells. Based on such anatomic observations, early proposals have attributed a role in "gain control" for GCs, a function disputed by recent investigations, which assert that GCs instead contribute to oscillatory mechanisms. However, conclusive physiological evidence based on studies of cerebellum-dependent behavior supporting/dismissing the gain control proposition has been lacking as of yet.

View Article and Find Full Text PDF