Publications by authors named "Surya Sankuratri"

The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies.

View Article and Find Full Text PDF

Background And Purpose: The human CCR5 receptor is a co-receptor for HIV-1 infection and a target for anti-viral therapy. A greater understanding of the binding kinetics of small molecule allosteric ligand interactions with CCR5 will lead to a better understanding of the binding process and may help discover new molecules that avoid resistance.

Experimental Approach: Using [(3) H] maraviroc as a radioligand, a number of different binding protocols were employed in conjunction with simulations to determine rate constants, kinetic mechanism and mutant kinetic fingerprints for wild-type and mutant human CCR5 with maraviroc, aplaviroc and vicriviroc.

View Article and Find Full Text PDF

Unlabelled: During antiviral therapy, specific delivery of interferon-α (IFNα) to infected cells may increase its antiviral efficacy, trigger a localized immune reaction, and reduce the side effects caused by systemic administration. Two T-cell receptor-like antibodies (TCR-L) able to selectively bind hepatitis B virus (HBV)-infected hepatocytes of chronic hepatitis B patients and recognize core (HBc18-27) and surface (HBs183-91) HBV epitopes associated with different human leukocyte antigen (HLA)-A*02 alleles (A*02:01, A*02:02, A*02:07, A*02:11) were generated. Each antibody was genetically linked to two IFNα molecules to produce TCR-L/IFNα fusion proteins.

View Article and Find Full Text PDF

Elaboration of our previously disclosed spiropiperidine template led to the development of a series of novel CCR5 antagonists. Results of SAR exploration and preliminary lead characterization are described.

View Article and Find Full Text PDF

Starting with a high-throughput screening lead, a novel series of CCR5 antagonists was developed utilizing an information-based approach. Improvement of pharmacokinetic properties for the series was pursued by SAR exploration of the lead template. The synthesis, SAR and biological profiles of the series are described.

View Article and Find Full Text PDF

In passaging experiments, we isolated HIV strains resistant to MAb3952, a chemokine (C-C motif) receptor 5 (CCR5) monoclonal antibody (MAb) that binds to the second extracellular domain (extracellular loop 2 [ECL-2]) of CCR5. MAb3952-resistant viruses remain CCR5-tropic and are cross-resistant to a second ECL-2-specific antibody. Surprisingly, MAb3952-resistant viruses were more susceptible to RoAb13, a CCR5 antibody binding to the N terminus of CCR5.

View Article and Find Full Text PDF

A novel series of CCR5 antagonists has been identified, utilizing leads from high-throughput screening which were further modified based on insights from competitor molecules. Lead optimization was pursued by balancing opposing trends of metabolic stability and potency. Selective and potent analogs with good pharmacokinetic properties were successfully developed.

View Article and Find Full Text PDF

Resistance to antiretroviral drugs is a common problem in the treatment of HIV-1-infected patients. To overcome resistance, we generated a novel, bifunctional HIV-1 entry inhibitor by combining the anti-CD4 monoclonal antibody (mAb) 6314 with a fusion inhibitor similar to T-651 (anti-CD4 mAb based BiFunctional Fusion Inhibitor, CD4-BFFI). CD4-BFFI has potent antiviral activity against a multitude of HIV-1 isolates independent of their co-receptor usage and genetic background.

View Article and Find Full Text PDF

In this study, we describe a novel CD4-targeting bifunctional human immunodeficiency virus (HIV-1) fusion inhibitor (CD4-BFFI) that blocks HIV-1 entry by inhibiting both HIV-1 attachment and fusion and is highly potent against both R5 and X4 HIV-1 viruses in various antiviral assays, including peripheral blood mononuclear cell (PBMC) infection assays. Previously, we have reported a CCR5 antibody-based bifunctional HIV-1 fusion inhibitor (BFFI) that was highly active in blocking R5 HIV-1 infection but was ineffective against X4 viruses infecting human PBMCs (Kopetzki, E., Jekle, A.

View Article and Find Full Text PDF

Replacement of the cyclic carbamate in our previously disclosed 1-oxa-3,9-diazaspiro[5.5]undecan-2-one template led to the discovery of two novel series of 3,9-diazaspiro[5.5]undecane and undeca-2-one CCR5 antagonists.

View Article and Find Full Text PDF

We describe a novel strategy in which two inhibitors of HIV viral entry were incorporated into a single molecule. This bifunctional fusion inhibitor consists of an antibody blocking the binding of HIV to its co-receptor CCR5, and a covalently linked peptide which blocks envelope mediated virus-cell fusion. This novel bifunctional molecule is highly active on CCR5- and X4-tropic viruses in a single cycle assay and a reporter cell line with IC50 values of 0.

View Article and Find Full Text PDF

In addition to being an important receptor in leukocyte activation and mobilization, CCR5 is the essential coreceptor for human immunodeficiency virus (HIV). A large number of small-molecule CCR5 antagonists have been reported that show potent activities in blocking chemokine function and HIV entry. To facilitate the design and development of next generation CCR5 antagonists, docking models for major classes of CCR5 antagonists were created by using site-directed mutagenesis and CCR5 homology modeling.

View Article and Find Full Text PDF

A panel of four CCR5 monoclonal antibodies (mAbs) recognizing different epitopes on CCR5 was examined in CCR5-mediated cell-cell fusion assay, alone or in combination with a variety of small molecule CCR5 antagonists. Although no antagonism was observed between any of the CCR5 inhibitors, surprisingly potent synergy was observed between CCR5 mAbs and antagonists, and the synergistic activity was confirmed in other antiviral assays. Strong synergy was also observed between CCR5 inhibitors and the human immunodeficiency virus (HIV) fusion inhibitor enfuvirtide.

View Article and Find Full Text PDF

Six mouse anti-human CCR5 monoclonal antibodies (mAbs) that showed potent antiviral activities were identified from over 26,000 mouse hybridomas. The epitopes for these mAbs were determined by using various CCR5 mutants, including CCR5/CCR2B chimeras. One mAb, ROAb13, was found to bind to a linear epitope in the N terminus of CCR5.

View Article and Find Full Text PDF

To identify monoclonal antibodies (mAbs) with high potency and novel recognition sites, more than 25,000 of mouse hybridomas were screened and 4 novel anti-human CCR5 mAbs ROAb12, ROAb13, ROAb14, and ROAb18 showing potent activity in cell-cell fusion (CCF) assay were identified. These mAbs demonstrated potent antiviral activities in both single-cycle HIV infection (IC(50) range: 0.16-4.

View Article and Find Full Text PDF

There has been increasing interest in the identification of novel HIV entry inhibitors. For the discovery of these entry inhibitors, robust surrogate anti-HIV assays are highly desired. The authors report a novel anti-HIV assay system using Moloney murine leukemia viruses (MMLVs) pseudotyped with cytoplasmic tail-truncated HIV envelope protein gp140.

View Article and Find Full Text PDF

In the current study, a novel coreceptor-specific cell-cell fusion (CCF) assay system is reported. The system possesses the following features: dual CCR5-dependent and CXCR4-dependent CCF assays, all stable cell lines, inducible expression of gp160 to minimize cytotoxicity, robust luciferase reporter, and 384-well format. These assays have been validated using various known HIV entry inhibitors targeting various stages of the HIV entry/fusion process, including fusion inhibitors, gp120 inhibitors, CCR5 antagonists, CCR5 antibodies, and CXCR4 antagonists.

View Article and Find Full Text PDF