Publications by authors named "Surya Ganguli"

Remembering events is crucial to intelligent behavior. Flexible memory retrieval requires a cognitive map and is supported by two key brain systems: hippocampal episodic memory (EM) and prefrontal working memory (WM). Although an understanding of EM is emerging, little is understood of WM beyond simple memory retrieval.

View Article and Find Full Text PDF
Article Synopsis
  • Sensory systems, such as the visual system in salamanders, are designed to differentiate between stimuli based on neural sensitivity and neural variability, which includes correlations among neurons.
  • This study uses a model of the retinal neural code to analyze how a population of salamander retinal ganglion cells adapts to better transmit information about natural scenes, especially localized motion.
  • The findings challenge previous models by showing that correlated neural noise actually reduces information transmission and arises due to the shared circuitry in the retina, while also highlighting the retina's ability to adapt its sensitivity to enhance the detection of natural movements.
View Article and Find Full Text PDF
Article Synopsis
  • Animals, especially mammals, utilize grid cells in the medial entorhinal cortex to create a spatial map of their surroundings to help locate resources like food and shelter.
  • Researchers recorded over 15,000 grid cells in mice to examine how quickly these cells adapt their firing patterns in response to changes in the environment, finding that fixed visual landmarks provide stable input for these cells.
  • The study highlights a dual mechanism in the brain where fixed connections ensure quick adaptation to new environments, while plasticity in other brain regions allows for more precise navigation over time, suggesting a broader principle of flexible connectivity in neural networks.
View Article and Find Full Text PDF

Across many disciplines spanning from neuroscience and genomics to machine learning, atmospheric science, and finance, the problems of denoising large data matrices to recover hidden signals obscured by noise, and of estimating the structure of these signals, is of fundamental importance. A key to solving these problems lies in understanding how the singular value structure of a signal is deformed by noise. This question has been thoroughly studied in the well-known spiked matrix model, in which data matrices originate from low-rank signal matrices perturbed by additive noise matrices, in an asymptotic limit where matrix size tends to infinity but the signal rank remains finite.

View Article and Find Full Text PDF

In this work, we explore the limiting dynamics of deep neural networks trained with stochastic gradient descent (SGD). As observed previously, long after performance has converged, networks continue to move through parameter space by a process of anomalous diffusion in which distance traveled grows as a power law in the number of gradient updates with a nontrivial exponent. We reveal an intricate interaction among the hyperparameters of optimization, the structure in the gradient noise, and the Hessian matrix at the end of training that explains this anomalous diffusion.

View Article and Find Full Text PDF

We combine stochastic thermodynamics, large deviation theory, and information theory to derive fundamental limits on the accuracy with which single cell receptors can estimate external concentrations. As expected, if the estimation is performed by an ideal observer of the entire trajectory of receptor states, then no energy consuming nonequilibrium receptor that can be divided into bound and unbound states can outperform an equilibrium two-state receptor. However, when the estimation is performed by a simple observer that measures the fraction of time the receptor is bound, we derive a fundamental limit on the accuracy of general nonequilibrium receptors as a function of energy consumption.

View Article and Find Full Text PDF

Understanding the circuit mechanisms of the visual code for natural scenes is a central goal of sensory neuroscience. We show that a three-layer network model predicts retinal natural scene responses with an accuracy nearing experimental limits. The model's internal structure is interpretable, as interneurons recorded separately and not modeled directly are highly correlated with model interneurons.

View Article and Find Full Text PDF

The ability for the brain to discriminate among visual stimuli is constrained by their retinal representations. Previous studies of visual discriminability have been limited to either low-dimensional artificial stimuli or pure theoretical considerations without a realistic encoding model. Here we propose a novel framework for understanding stimulus discriminability achieved by retinal representations of naturalistic stimuli with the method of information geometry.

View Article and Find Full Text PDF

Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts.

View Article and Find Full Text PDF

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors.

View Article and Find Full Text PDF

The discovery of entorhinal grid cells has generated considerable interest in how and why hexagonal firing fields might emerge in a generic manner from neural circuits, and what their computational significance might be. Here, we forge a link between the problem of path integration and the existence of hexagonal grids, by demonstrating that such grids arise in neural networks trained to path integrate under simple biologically plausible constraints. Moreover, we develop a unifying theory for why hexagonal grids are ubiquitous in path-integrator circuits.

View Article and Find Full Text PDF

Understanding the neural basis of the remarkable human cognitive capacity to learn novel concepts from just one or a few sensory experiences constitutes a fundamental problem. We propose a simple, biologically plausible, mathematically tractable, and computationally powerful neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas.

View Article and Find Full Text PDF

Neural circuits consist of many noisy, slow components, with individual neurons subject to ion channel noise, axonal propagation delays, and unreliable and slow synaptic transmission. This raises a fundamental question: how can reliable computation emerge from such unreliable components? A classic strategy is to simply average over a population of N weakly-coupled neurons to achieve errors that scale as [Formula: see text]. But more interestingly, recent work has introduced networks of leaky integrate-and-fire (LIF) neurons that achieve coding errors that scale superclassically as 1/N by combining the principles of predictive coding and fast and tight inhibitory-excitatory balance.

View Article and Find Full Text PDF

We introduce a novel, biologically plausible local learning rule that provably increases the robustness of neural dynamics to noise in nonlinear recurrent neural networks with homogeneous nonlinearities. Our learning rule achieves higher noise robustness without sacrificing performance on the task and without requiring any knowledge of the particular task. The plasticity dynamics-an integrable dynamical system operating on the weights of the network-maintains a multiplicity of conserved quantities, most notably the network's entire temporal map of input to output trajectories.

View Article and Find Full Text PDF

Neurons in the CA1 area of the mouse hippocampus encode the position of the animal in an environment. However, given the variability in individual neurons responses, the accuracy of this code is still poorly understood. It was proposed that downstream areas could achieve high spatial accuracy by integrating the activity of thousands of neurons, but theoretical studies point to shared fluctuations in the firing rate as a potential limitation.

View Article and Find Full Text PDF

The computational role of the abundant feedback connections in the ventral visual stream is unclear, enabling humans and nonhuman primates to effortlessly recognize objects across a multitude of viewing conditions. Prior studies have augmented feedforward convolutional neural networks (CNNs) with recurrent connections to study their role in visual processing; however, often these recurrent networks are optimized directly on neural data or the comparative metrics used are undefined for standard feedforward networks that lack these connections. In this work, we develop task-optimized convolutional recurrent (ConvRNN) network models that more correctly mimic the timing and gross neuroanatomy of the ventral pathway.

View Article and Find Full Text PDF

Reliable sensory discrimination must arise from high-fidelity neural representations and communication between brain areas. However, how neocortical sensory processing overcomes the substantial variability of neuronal sensory responses remains undetermined. Here we imaged neuronal activity in eight neocortical areas concurrently and over five days in mice performing a visual discrimination task, yielding longitudinal recordings of more than 21,000 neurons.

View Article and Find Full Text PDF

Cortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneurons. Here, we use the excitatory postsynaptic marker PSD-95, fluorescently labeled at endogenous levels, as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV) interneurons in the barrel cortex of adult mice.

View Article and Find Full Text PDF

The intertwined processes of learning and evolution in complex environmental niches have resulted in a remarkable diversity of morphological forms. Moreover, many aspects of animal intelligence are deeply embodied in these evolved morphologies. However, the principles governing relations between environmental complexity, evolved morphology, and the learnability of intelligent control, remain elusive, because performing large-scale in silico experiments on evolution and learning is challenging.

View Article and Find Full Text PDF

During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains incompletely understood. We combine electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC), and medial entorhinal cortex (MEC).

View Article and Find Full Text PDF

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy.

View Article and Find Full Text PDF

Coordinated activity across networks of neurons is a hallmark of both resting and active behavioural states in many species. These global patterns alter energy metabolism over seconds to hours, which underpins the widespread use of oxygen consumption and glucose uptake as proxies of neural activity. However, whether changes in neural activity are causally related to metabolic flux in intact circuits on the timescales associated with behaviour is unclear.

View Article and Find Full Text PDF

The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, but this hypothesis has not been causally tested in vivo in the mammalian brain. The presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer.

View Article and Find Full Text PDF