Publications by authors named "Surta T"

Article Synopsis
  • The study focuses on Kcoronene, a potassium-intercalated polycyclic aromatic hydrocarbon, detailing its synthesis, structure, and magnetic properties while outlining a computational method to identify suitable PAHs for metal intercalation.
  • Coronene was selected based on a screening of its electronic structure and available void space, demonstrating stability when intercalated with three potassium ions per coronene molecule.
  • Despite structural changes and disorder caused by potassium intercalation, Kcoronene did not exhibit superconductivity, which contrasts with earlier findings and may be linked to the extensive structural disruption observed.
View Article and Find Full Text PDF
Article Synopsis
  • High oxidation state metal cations like niobium play a significant role in carbon dioxide capture through chemisorption and catalysis, providing basic oxygens that aid in CO binding and release.
  • The study focuses on aqueous niobium polyoxometalates, specifically their ability to interact with CO, leading to the formation of Nb-carbonate compounds that enhance CO capture efficiency.
  • Results show that the type of counter cations influences the stability and efficacy of Nb structures for CO capture, with potassium yielding optimal performance at the air-water interface while demonstrating the ability to manipulate POM speciation using gas stimuli.
View Article and Find Full Text PDF

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg and the host structure. VPS is reported as a positive electrode material for rechargeable magnesium batteries.

View Article and Find Full Text PDF

This work highlights the synthesis and properties of novel basic hydroxohalide glasses of zirconium and hafnium. The hydroxohalide glasses are M(OH)X·(n)HO where M represents either zirconium or hafnium, and X represents either chloride or bromide. The chemical structure is investigated using X-ray diffraction, total scattering, and the pair distribution function method to identify the local structure and any short-range connectivity.

View Article and Find Full Text PDF

Glasses frequently reveal structural relaxation that leads to changes in their physical properties including enthalpy, specific volume, and resistivity. Analyzing the short-range order (SRO) obtained from electron diffraction by transmission electron microscopy (TEM) in combination with Reverse-Monte-Carlo (RMC) simulations is shown to provide information on the atomic arrangement. The technique elaborated here features several benefits including reliability, accessibility, and allows for obtaining detailed structural data quickly.

View Article and Find Full Text PDF

Aqueous solutions of zirconium and hafnium (M) halides (X) with atomic ratios α = X/M near 1 form glasses on evaporation. Herein, we describe the preparation and properties of these glasses and discuss the nature of the crystal-glass equilibria beyond the pure glass compositions. Small- and wide-angle X-ray scattering (SWAXS) studies reveal increased polymerization as α decreases from 2 to 1.

View Article and Find Full Text PDF

Li-rich rocksalt oxides are promising candidates as high-energy density cathode materials for next-generation Li-ion batteries because they present extremely diverse structures and compositions. Most reported materials in this family contain as many cations as anions, a characteristic of the ideal cubic closed-packed rocksalt composition. In this work, a new rocksalt-derived structure type is stabilized by selecting divalent Cu and pentavalent Sb cations to favor the formation of oxygen vacancies during synthesis.

View Article and Find Full Text PDF

A hexagonal analogue, LiSiOCl, of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation-experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies LiSiOCl as a stable candidate composition.

View Article and Find Full Text PDF

The piezoelectric devices widespread in society use noncentrosymmetric Pb-based oxides because of their outstanding functional properties. The highest figures of merit reported are for perovskites based on the parent Pb(MgNb)O (PMN), which is a relaxor: a centrosymmetric material with local symmetry breaking that enables functional properties, which resemble those of a noncentrosymmetric material. We present the Pb-free relaxor (KBi)(MgNb)O (KBMN), where the thermal and (di)electric behavior emerges from the discrete structural roles of the s K and s Bi cations occupying the same A site in the perovskite structure, as revealed by diffraction methods.

View Article and Find Full Text PDF

With the goal of finding new lithium solid electrolytes by a combined computational-experimental method, the exploration of the Li-Al-O-S phase field resulted in the discovery of a new sulfide LiAlS. The structure of the new phase was determined through an approach combining synchrotron X-ray and neutron diffraction with Li and Al magic-angle spinning nuclear magnetic resonance spectroscopy and revealed to be a highly ordered cationic polyhedral network within a sulfide anion -type sublattice. The originality of the structure relies on the presence of AlS repeating dimer units consisting of two edge-shared Al tetrahedra.

View Article and Find Full Text PDF

This study reveals the transport behavior of lattice water during proton (de)insertion in the structure of the hexagonal WO·0.6HO electrode. By monitoring the mass evolution of this electrode material via electrochemical quartz crystal microbalance, we discovered (1) WO·0.

View Article and Find Full Text PDF

Nongraphitizable carbon, also known as hard carbon, is considered one of the most promising anodes for the emerging Na-ion batteries. The current mechanistic understanding of Na-ion storage in hard carbon is based on the "card-house" model first raised in the early 2000s. This model describes that Na-ion insertion occurs first through intercalation between graphene sheets in turbostratic nanodomains, followed by Na filling of the pores in the carbon structure.

View Article and Find Full Text PDF