Publications by authors named "Surovtsev N"

The use of deuterated compounds is an interesting opportunity to expand the capabilities of Raman spectroscopy to study metabolism in living cells. Different biological objects have different tolerances to different deuterated compounds, and their metabolic chains may differ. Here, we explore the potential of this approach to probe metabolism in early mouse embryos.

View Article and Find Full Text PDF

Cell-based therapies using corneal stromal stem cells (CSSC), corneal keratocytes, or a combination of both suppress corneal scarring. The number of quiescent keratocytes in the cornea is small; it is difficult to expand them in vitro in quantities suitable for transplantation. This study examined the therapeutic effect of corneal fibroblasts reversed into keratocytes (rCF) in a mouse model of mechanical corneal injury.

View Article and Find Full Text PDF

There is the rapid growth in application of Brillouin scattering spectroscopy to biomedical objects in order to characterize their mechanoelastic properties in this way. However, the possibilities and limitations of the method when applied to tissues have not yet been clarified. Here, applicability of Brillouin spectroscopy for testing the elastic response of medically relevant tissues of bovine jugular vein and pericardium was considered.

View Article and Find Full Text PDF

Advances in cryobiology techniques commonly target either the cooling or the warming cycle, while little thought has been given to ≪repair≫ protocols applicable during cold storage. In particular, crystallization is the dominant threat to cryopreserved samples but proceeds from small nuclei that are innocuous if further growth is forestalled. To this end, we propose a laser editing technique that locally heats individual crystals above their melting point by a focused nanosecond pulse, followed by amorphization during rapid resolidification.

View Article and Find Full Text PDF

BSTS epitaxial thin film topological insulators were grown using the MBE technique on two different types of substrates , Si (111) and SiC/graphene with BiSbTeSe and BiSbTeSe, respectively. The crystallographic properties of BSTS films were investigated X-ray diffraction, which showed the strongest reflections from the (0 0 ) facets corresponding to the rhombohedral phase. Superior epitaxial growth, homogeneous thickness, smooth surfaces, and larger unit cell parameters were observed for the films grown on the Si substrate.

View Article and Find Full Text PDF

Under physiological conditions, the membranes and lipid droplets of germ cells are in a conformationally disordered phase. Typically, during cooling, lipids undergo the transition to ordered phases and, upon heating, melt into a disordered phase. In this communication, we report the lipid phase transition in lipid droplets observed in porcine oocytes.

View Article and Find Full Text PDF

Self-pressurised rapid freezing (SPRF) has been proposed as a simple alternative to traditional high-pressure freezing (HPF) protocols for vitrification of biological samples in electron microscopy and cryopreservation applications. Both methods exploit the circumstance that the melting point of ice reaches a minimum when subjected to pressure of around 210 MPa, however, in SPRF its precise quantity depends on sample properties and hence, is generally unknown. In particular, cryoprotective agents (CPAs) are expected to be a factor; though eschewed by many SPRF experiments, vitrification of larger samples notably cannot be envisaged without them.

View Article and Find Full Text PDF

Raman spectroscopy of cells cultured in a deuterated substrate is a promising approach to the characterization of mass transfer and enzymatic reactions in living cells. Here, we studied the potential of this approach using the example of yeast cells cultured under aerobic and anaerobic conditions. In our experiments, unadapted to DO Saccharomyces cerevisiae were cultured in a medium with different concentrations of deuterium oxide and deuterated glucose.

View Article and Find Full Text PDF

Here, we examined the gigahertz sound velocities of hydrated multibilayers of saturated (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) and unsaturated (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) phospholipids by Brillouin spectroscopy. Out-of-plane and in-plane (lateral) phonons were studied independently of each other. Similar strong temperature dependences of the sound velocities were found for phonons of both types.

View Article and Find Full Text PDF

Conformational states of phospholipid chains in ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), deuterated 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPC), and cholesterol (Chol) were studied by Raman spectroscopy. Parameters of Raman peaks sensitive to conformational order have been used to determine chain order for mixtures over a wide range of compositions. A ternary diagram of fractions of phospholipid chains in conformationally ordered and disordered states has been constructed.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing.

View Article and Find Full Text PDF

The ability of salts to change the macroscopic viscosity of their aqueous solutions is described by the Jones-Dole equation with B-coefficient for the linear concentration term. The sign and value of this coefficient are often considered as a measure of the salt's structure-making/breaking ability, while the validity of this assignment is still under discussion. Here, by applying Raman and Brillouin scattering spectroscopy to various salts from the Hofmeister series, we studied a possible relation between macroscopic Jones-Dole's B-coefficient and the microscopic dynamic response.

View Article and Find Full Text PDF

Titanium oxide (TiO) and oxynitride (N-TiO) coatings can increase nitinol stents' cytocompatibility with endothelial cells. Methods of TiO and N-TiO sputtering and cytocompatibility assessments vary significantly among different research groups, making it difficult to compare results. The aim of this work was to develop an integral cytocompatibility index (ICI) and a decision tree algorithm (DTA) using the "EA.

View Article and Find Full Text PDF

Cryopreservation of preimplantation embryos is a widely used technique, but this procedure might impact the subsequent embryo development. The effect of slow freezing and vitrification on the lipid metabolism in preimplantation mammalian embryos is not well studied. In this work, we applied Raman spectroscopy of isotopically labeled molecules to address the effects of cryopreservation on fatty acid accumulation in mouse embryos.

View Article and Find Full Text PDF

Biomimetic phospholipid mixtures are actively used as models of biological membranes and materials for drug delivery in biomedical tasks. One of the essential properties of membranes formed from complex phospholipid mixtures is the equilibrium coexistence of domains of different phases. Studying the conformational state and chemical content of different phases is of great interest in membrane biophysics.

View Article and Find Full Text PDF

Multicomponent lipid bilayers are used as models for searching the origin of spatial heterogeneities in biomembranes called lipid rafts, implying the coexistence of domains of different phases and compositions within the lipid bilayer. The spatial organization of multicomponent lipid bilayers on a scale of a hundred nanometers remains unknown. Brillouin spectroscopy providing information about the acoustic phonons with the wavelength of several hundred nanometers has an unexplored potential for this problem.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are a perfect host for the formation of one-dimensional phosphorus structures and to obtain hybrid materials with a large P-C ratio. This work presents a procedure for high-yield phosphorus filling of commercial Tuball SWCNTs and efficient removal of phosphorus deposits from the external nanotube surface. We probed white and red phosphorus as precursors, varied the synthesis temperature and the ampoule shape, and tested three solvents for sample purification.

View Article and Find Full Text PDF

Raman spectra of aqueous suspensions of vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), deuterated 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPC), and cholesterol (Chol) were studied at room temperature to determine the conformational states of the phospholipid hydrocarbon chains. Deuteration of DPPC allowed us to characterize the conformational states of DOPC and DPPC independently. The parameters of Raman peaks, which are sensitive to the conformational order, were studied in a wide range of compositions.

View Article and Find Full Text PDF

Low-frequency Raman spectroscopy was used to study the dynamic response on a nanometer scale of aqueous suspensions of two-component lipid vesicles. Binary mixtures of saturated phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) and cholesterol are interesting for possible coexistence of solidlike and liquid-ordered phases, while the phase coexistence was not reported for unsaturated phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) and cholesterol mixtures. The DOPC-DPPC mixtures represent the well-documented case of coexisting domains of solidlike and liquid-disordered phases.

View Article and Find Full Text PDF

In this paper we describe the properties of the crystal of guanylurea hydrogen phosphate (NH[Formula: see text])[Formula: see text]CNHCO(NH[Formula: see text])H[Formula: see text]PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has a wide window of transparency and a high optical threshold in the visible and NIR spectral regions and narrow absorption bands in the terahertz frequency range. The spectral characteristics of absorption and refraction in the THz range were found to be strongly dependent on crystal temperature and orientation.

View Article and Find Full Text PDF

The use of deuterocarbons is an effective method in the Raman spectroscopy of multicomponent lipid materials and biological samples. Here, Raman spectra of hydrated multilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), its deuterated analog 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPC), and DPPC-DPPC mixtures were studied in a wide temperature range to specify the Raman indicators of conformational and lateral orders. The temperature dependence of the 985 cm line in the deuterated phospholipid unequivocally indicates that this line corresponds to the CC stretching vibrations of deuterated hydrocarbon chains in the all-trans conformation.

View Article and Find Full Text PDF

Cryopreservation of oocytes has already been used to preserve genetic resources, but this technology faces limitations when applied to the species whose oocytes contain large amounts of cytoplasmic lipid droplets. Although cryoinjuries in such oocytes are usually associated with the lipid phase transition in lipid droplets, this phenomenon is still poorly understood. We applied Raman spectroscopy of deuterium-labeled lipids to investigate the freezing of lipid droplets inside cat oocytes.

View Article and Find Full Text PDF

The aqueous suspension of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles with different hydration levels(water-to-lipid mass ratio) have been studied by Brillouin spectroscopy in the temperature range from -190 °C to 70 °C. The samples with different hydration levels demonstrate similar temperature behavior of their sound velocity in the temperature range from -190 °C to -25 °C. There is a strong correlation between the hydration level of the sample and the character of the sound velocity temperature dependence at higher temperatures.

View Article and Find Full Text PDF

We present a comprehensive theoretical and experimental Raman spectroscopic comparative study of bulk Phosphorus allotropes (white, black, Hittorf's, fibrous) and their monolayer equivalents, demonstrating that the application of the Placzek approximation to density functional theory calculated frequencies allows reliable and accurate reproduction of the bulk spectra at a relatively low computational cost. As well as accurate frequencies, peak intensities are also reproduced with reasonable accuracy. Having established the viability of the method we apply it to other less well characterised phosphorus forms such as isolated P4 cages and the planar blue-phosphorus phase.

View Article and Find Full Text PDF