Background: Inhomogeneous patterns of chromatin-chromatin contacts within 10-100-kb-sized regions of the genome are a generic feature of chromatin spatial organization. These features, termed topologically associating domains (TADs), have led to the loop extrusion factor (LEF) model. Currently, our ability to model TADs relies on the observation that in vertebrates TAD boundaries are correlated with DNA sequences that bind CTCF, which therefore is inferred to block loop extrusion.
View Article and Find Full Text PDFChromatin is a polymer complex of DNA and proteins that regulates gene expression. The three-dimensional (3D) structure and organization of chromatin controls DNA transcription and replication. High-throughput chromatin conformation capture techniques generate Hi-C maps that can provide insight into the 3D structure of chromatin.
View Article and Find Full Text PDFBiomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains.
View Article and Find Full Text PDFChromatin polymer dynamics are commonly described using the classical Rouse model. The subsequent discovery, however, of intermediate-scale chromatin organization known as topologically associating domains (TADs) in experimental Hi-C contact maps for chromosomes across the tree of life, together with the success of loop extrusion factor (LEF) model in explaining TAD formation, motivates efforts to understand the effect of loops and loop extrusion on chromatin dynamics. This paper seeks to fulfill this need by combining LEF-model simulations with extended Rouse-model polymer simulations to investigate the dynamics of chromatin with loops and dynamic loop extrusion.
View Article and Find Full Text PDFAutophagic mechanisms that maintain nuclear envelope homeostasis are bulwarks to aging and disease. By leveraging 4D lattice light sheet microscopy and correlative light and electron tomography, we define a quantitative and ultrastructural timeline of nuclear macroautophagy (nucleophagy) in yeast. Nucleophagy begins with a rapid accumulation of the selective autophagy receptor Atg39 at the nuclear envelope and finishes in ~300 seconds with Atg39-cargo delivery to the vacuole.
View Article and Find Full Text PDFThe molecular mechanisms by which the endosomal sorting complexes required for transport (ESCRT) proteins contribute to the integrity of the nuclear envelope (NE) barrier are not fully defined. We leveraged the single NE hole generated by mitotic extrusion of the Schizosaccharomyces pombe spindle pole body to reveal two modes of ESCRT function executed by distinct complements of ESCRT-III proteins, both dependent on CHMP7/Cmp7. A grommet-like function is required to restrict the NE hole in anaphase B, whereas replacement of Cmp7 by a sealing module ultimately closes the NE in interphase.
View Article and Find Full Text PDFThe chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes.
View Article and Find Full Text PDFChromatin loop extrusion by structural maintenance of chromosome (SMC) complexes is thought to underlie intermediate-scale chromatin organization inside cells. Motivated by a number of experiments suggesting that nucleosomes may block loop extrusion by SMCs, such as cohesin and condensin complexes, we introduce and characterize theoretically a composite loop extrusion factor (composite LEF) model. In addition to an SMC complex that creates a chromatin loop by encircling two threads of DNA, this model includes a remodeling complex that relocates or removes nucleosomes as it progresses along the chromatin, and nucleosomes that block SMC translocation along the DNA.
View Article and Find Full Text PDFAll cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli.
View Article and Find Full Text PDFSeveral recent experiments, including our own experiments in the fission yeast, Schizosaccharomyces pombe, have characterized the motions of gene loci within living nuclei by measuring the locus position over time, then proceeding to obtain the statistical properties of this motion. To address the question of whether a population of such single-particle tracks, obtained from many different cells, corresponds to a single mode of diffusion, we derive theoretical equations describing the probability distribution of the displacement covariance, assuming the displacement itself is a zero-mean multivariate Gaussian random variable. We also determine the corresponding theoretical means, variances, and third central moments.
View Article and Find Full Text PDFMacromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape.
View Article and Find Full Text PDFSpatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties.
View Article and Find Full Text PDFIn bacteria, chromosome dynamics and gene expression are modulated by nucleoid-associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation.
View Article and Find Full Text PDFSpatial ordering of macromolecular components inside cells is important for cellular physiology and replication. In bacteria, ParA/B systems are known to generate various intracellular patterns that underlie the transport and partitioning of low-copy-number cargos such as plasmids. ParA/B systems consist of ParA, an ATPase that dimerizes and binds DNA upon ATP binding, and ParB, a protein that binds the cargo and stimulates ParA ATPase activity.
View Article and Find Full Text PDFIn bacteria, ParABS systems mediate intracellular transport of various cargos, including chromosomal regions in Caulobacter crescentus. Transport of the ParB/parS partition complex requires the DNA-binding activity of ParA, which transiently tethers the partition complex during translocation. In C.
View Article and Find Full Text PDFWith the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today's single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images.
View Article and Find Full Text PDFCell size control is an intrinsic feature of the cell cycle. In bacteria, cell growth and division are thought to be coupled through a cell size threshold. Here, we provide direct experimental evidence disproving the critical size paradigm.
View Article and Find Full Text PDFThe widely conserved ParABS system plays a major role in bacterial chromosome segregation. How the components of this system work together to generate translocation force and directional motion remains uncertain. Here, we combine biochemical approaches, quantitative imaging and mathematical modeling to examine the mechanism by which ParA drives the translocation of the ParB/parS partition complex in Caulobacter crescentus.
View Article and Find Full Text PDFThe physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size.
View Article and Find Full Text PDFEksp Klin Gastroenterol
June 2012
Aim: To assess transesophageal ultrasonography capabilities in diagnosis of mediastinal malignant tumors.
Materials And Methods: Technique of radial transesophageal ultrasonography was used to diagnose mediastinal malignancy in 157 patients. Method of amplitude hystography was employed to assess lymph nodes.
Eukaryotic cells spatially organize mRNA processes such as translation and mRNA decay. Much less is clear in bacterial cells where the spatial distribution of mature mRNA remains ambiguous. Using a sensitive method based on quantitative fluorescence in situ hybridization, we show here that in Caulobacter crescentus and Escherichia coli, chromosomally expressed mRNAs largely display limited dispersion from their site of transcription during their lifetime.
View Article and Find Full Text PDFSelf-replication is an essential attribute of life but the molecular-level mechanisms involved are not well understood. Cellular self-replication requires not only duplicating all cellular components and doubling volume and membrane area, but also replicating cellular geometry. A whole-cell modeling framework is presented in which an assumed reaction network determines both concentration changes of cellular components and cell geometry.
View Article and Find Full Text PDFCytokinesis in prokaryotes involves the assembly of a polymeric ring composed of FtsZ protein monomeric units. The Z ring forms at the division plane and is attached to the membrane. After assembly, it maintains a stable yet dynamic steady state.
View Article and Find Full Text PDFAfter activation with NiCl2, the recombinant alpha subunit of the Ni-containing alpha2beta2 acetyl-CoA synthase/carbon monoxide dehydrogenase (ACS/CODH) catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group donated from the corrinoid-iron-sulfur protein (CoFeSP). The alpha subunit has two conformations (open and closed), and contains a novel [Fe4S4]-[Nip Nid] active site in which the proximal Nip ion is labile. Prior to Ni activation, recombinant apo-alpha contain only an Fe4S4 cluster.
View Article and Find Full Text PDF