Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis.
View Article and Find Full Text PDFAging and various neurodegenerative diseases cause significant reduction in adult neurogenesis and simultaneous increase in quiescent neural stem cells (NSCs), which impact the brain's regenerative capabilities. To deal with this challenging issue, current treatments involve stem cell transplants or prevention of neurodegeneration; however, the efficacy or success of this process remains limited. Therefore, extensive and focused investigation is highly demanding to overcome this challenging task.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease caused by the absence of a dystrophin protein. Elevating utrophin, a dystrophin paralogue, offers an alternative therapeutic strategy for treating DMD, irrespective of the mutation type. Herein, we report the design and synthesis of novel quinazoline and quinoline-based small molecules as potent utrophin modulators screened via high throughput In-Cell ELISA in C2C12 cells.
View Article and Find Full Text PDFThe emergence of antimicrobial resistance, exemplified by methicillin-resistant (MRSA), poses a grave threat to public health globally. Over time, MRSA has evolved resistance to multiple antibiotics, challenging conventional treatment strategies. The relentless adaptability of MRSA underscores the urgent need for innovative and targeted antimicrobial approaches to combat this resilient pathogen.
View Article and Find Full Text PDFThe escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants.
View Article and Find Full Text PDFAntimicrobial cationic peptides are intriguing and propitious antibiotics for the future, even against multidrug-resistant superbugs. Venoms serve as a source of cutting-edge therapeutics and innovative, unexplored medicines. In this study, a novel cationic peptide library consisting of seven sequences was designed and synthesized from the snake venom cathelicidin, batroxicidin (BatxC), with the inclusion of the FLPII motif at the N-terminus.
View Article and Find Full Text PDFAmyloid-β 42(Aβ42), an enzymatically cleaved (1-42 amino acid long) toxic peptide remnant, has long been reported to play the key role in Alzheimer's disease (AD). Aβ42 also plays the key role in the onset of other AD-related factors including hyperphosphorylation of tau protein that forms intracellular neurofibrillary tangles, imbalances in the function of the neurotransmitter acetylcholine, and even generation of reactive oxygen species (ROS), disrupting the cytoskeleton and homeostasis of the cell. To address these issues, researchers have tried to construct several strategies to target multiple aspects of the disease but failed to produce any clinically successful therapeutic molecules.
View Article and Find Full Text PDFThe sudden ravaging outbreak of a novel coronavirus, or SARS-CoV-2, in terms of virulence, severity, and casualties has already overtaken previous versions of coronaviruses, like SARS CoV and MERS CoV. Originating from its epicenter in Wuhan, China, this mutated version of the influenza virus with its associated pandemic effects has engulfed the whole world with awful speed. In the midst of this bewildering situation, medical and scientific communities are on their toes to produce the potential vaccine-mediated eradication of this virus.
View Article and Find Full Text PDFChondroitin sulfate proteoglycans (CSPGs) are the most abundant components of glial scar formed after severe traumatic brain injury as well as spinal cord injury and play a crucial inhibitory role in axonal regeneration by selective contraction of filopodia of the growth cone of sprouting neurites. Healing of central nervous system (CNS) injury requires degradation of the glycosamine glycan backbone of CSPGs in order to reduce the inhibitory effect of the CSPG layer. The key focus of this Viewpoint is to address a few important regenerative approaches useful for overcoming the inhibitory barrier caused by chondroitin sulfate proteoglycans.
View Article and Find Full Text PDF