Publications by authors named "Suriyan Cha-um"

Background: Global warming-related temperature increases have a substantial effect on plant and human health. The Arabica coffee plant is susceptible to growing in many places across the world where temperatures are rising. This study examines how nanosilicon and seaweed extracts can improve Arabica coffee plant resilience during heat stress treatment (49.

View Article and Find Full Text PDF

The lower Chao Phraya River Basin (CPRB) in Thailand, a major rice-producing area, is grappling with increased water scarcity alongside more frequent floods and droughts, necessitating effective adaptation strategies to sustain agricultural productivity. This study assesses the impacts of climate change on rice yield and irrigation water use, using the DSSAT-CERES-Rice model. Based on these findings, potential genotype- and management-based adaptation strategies were recommended.

View Article and Find Full Text PDF

Nitrogen use efficiency (NUE) is important for the growth and development of rice and is significant in reducing the costs of rice production. is involved in nitrate assimilation, and the alleles at position 21,759,092 on chromosome 10 clearly separate indica (Pathum Thani 1 (PTT1) and Homcholasit (HCS)) and japonica (Azucena and Leum Pua (LP)) rice varieties. Rice morphological and physiological traits were collected at three nitrogen levels (N0 = 0 kg ha, N7 = 43.

View Article and Find Full Text PDF

This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world.

View Article and Find Full Text PDF

The aim of this study was to assess the removal capability of Fe/Al contamination of Indian camphorweed (Pluchea indica; hereafter, P. indica) using different growth substrates (100% sand, gardening soil, vermiculite, and zeolite). In addition, the study aimed at observing the physio-morphological adaptation strategies of P.

View Article and Find Full Text PDF

Drought stress adversely affects growth, development, productivity, and fiber quality of cotton (Gossypium hirsutum L). Breeding strategies to enhance drought tolerance require an improved knowledge of plant drought responses necessitating proper identification of drought-tolerant genotypes of crops, including cotton. The objective of this study was to classify the selected cotton genotypes for their drought tolerance ability based on morpho-physio-biochemical traits using Hierarchical Ward's cluster analysis.

View Article and Find Full Text PDF

Unlabelled: The objective of this study was to assess the effects of phosphate solubilizing rhizo-microbes inoculants on nutrient balance, physiological adaptation, growth characteristics, and rhizome yield traits as well as curcuminoids yield at the secondary-rhizome initiation stage of turmeric plants, subsequently subjected to water-deficit (WD) stress. Phosphorus contents in the leaf tissues of and sp. () inoculated plants peaked at 0.

View Article and Find Full Text PDF

Centella asiatica (Indian pennywort) is a green leafy vegetable containing centelloside' (triterpenoid), a key phytochemical component in traditional medicine. Being a glycophytic species, they exhibit decline in growth performance and yield traits when subjected to water-deficit (WD) conditions. Glycine betaine (GB) is a low molecular-weight organic metabolite that plays a crucial role in abiotic stress conditions in higher plants.

View Article and Find Full Text PDF

Unlabelled: Iron (Fe) toxicity in plant species depends on the availability of Fe in the soil, uptake ability by the root system, and translocation rate to other parts of the plant. The aim of this study was to assess Fe uptake by root tissues of , translocation rate to leaf tissues, and the impairment of plant physio-morphological characteristics. Fe uptake by the roots (~ 700 µg g DW) of was observed during the early exposure period (1 week), and translocation factor from root to shoot was fluctuated as an independent strategy.

View Article and Find Full Text PDF

Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants.

View Article and Find Full Text PDF

Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds.

View Article and Find Full Text PDF

Arbuscular mycorrhizal ecosystem provides sustainability to plant integrity under drought situations. However, host plants that survive in drought frequently lose yield. The potential of Funneliformis mosseae (F), Claroideoglomus etunicatum (C), and Acaulospora fovaeta (A) was assessed to evaluate in indica rice cv.

View Article and Find Full Text PDF

Unmanned aerial vehicles (UAVs) equipped with multi-sensors are one of the most innovative technologies for measuring plant health and predicting final yield in field conditions, especially in the water deficit situation in rain-deprived regions. The objective of this investigation was to evaluate the individual plant and canopy-level measurements using UAV imageries in three different genotypes, Suwan4452 (drought-tolerant), Pac339, and S7328 (drought-sensitive) of maize (Zea mays L.) at vegetative and reproductive stages under WW (well-watered) and WD (water deficit) conditions.

View Article and Find Full Text PDF

Rice is the staple food for more than half of the world's population. Iron toxicity limits rice production in several regions of the world. Breeding Fe-tolerant rice varieties is an excellent approach to address the problem of Fe toxicity.

View Article and Find Full Text PDF

Climate change and agricultural malpractices are exacerbating drought in many parts of the world causing a substantial agricultural production loss. The improvement of drought tolerance in rice is crucial for maintaining productivity and ensuring global food security. Alternate wetting and drying (AWD) irrigation along with plant-microbe interaction through arbuscular mycorrhizal fungi (AMF) is a potential approach for enhancing rice production through AMF-induced up-regulation of tolerance and resilience against drought stress.

View Article and Find Full Text PDF

Nitrogen (N) is an essential nutrient available to the plants in form of nitrate and ammonium. It is a macronutrient important for the plant growth and development, especially in cereal crops, which consume it for the production of amino acids, proteins/enzymes, nucleic acids, cell wall complexes, plant hormones, and vitamins. In rice production, 17 kg N uptake is required to produce 1 ton of rice.

View Article and Find Full Text PDF

Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl (Al toxicity) at pH 4.5.

View Article and Find Full Text PDF

Acid sulphate soil contains high amounts of iron (Fe) and aluminum (Al), and their contamination has been reported as major problems, especially in rainfed and irrigated lowland paddy fields. Rice is sensitive to Fe and Al grown in acid soil (pH < 5.5), leading to growth inhibition and grain yield loss.

View Article and Find Full Text PDF

Drought has been identified as a major factor restricting maize productivity worldwide, especially in the rainfed areas. The objective of the present study was to investigate the physiological adaptation strategies and sugar-related gene expression levels in three maize (Zea mays L.) genotypes with different drought tolerance abilities (Suwan4452, drought tolerant as a positive check; S7328, drought susceptible as a negative check; Pac339, drought susceptible) at the seedling stage.

View Article and Find Full Text PDF

In vitro acclimatization has been validated as the successful key to harden the plantlets before transplanting to ex vitro conditions. In the present study, we investigated the potential of different sugar types (glucose, fructose, galactose, sucrose) in regulating morphological, physiological and biochemical strategies, survival percentage and growth performance, and rhizome traits of turmeric under -osmotic potential. Leaf greenness (SPAD value) in acclimatized plantlets (4% glucose; -1.

View Article and Find Full Text PDF

Turmeric (Curcuma longa L.; Zingiberaceae), an economically important crop and a major spice in Indian cuisine, produces natural yellow color (curcumin) as well as curcuminoids which are widely utilized in traditional and modern medicinal practices. During the turmeric culture, the fluctuations of precipitation and seasonal changes in the whole life cycle play a major role, especially water shortage and decreasing temperature (in winter season), leading to rhizome dormancy under extreme weather conditions.

View Article and Find Full Text PDF

Sodium salt contamination in the fresh water due to industrial effluents, underground rock salts and inland aquaculture is a major concern needs to be remediated, and subsequently recycled as sustainable bioeconomic strategy. Treatment of saline wastewater requires efficient, cost-effective, rapid, and green technologies, so as to mitigate the negative impacts of salinity on agricultural land. Green technology of phytodesalination is proposed to reduce salinity in the wastewater using salt tolerant plant species.

View Article and Find Full Text PDF

Aluminum (Al) toxicity in acidic soils is a major problem in rice crop production, especially in the acid sulfate soil (pH < 4.0). Selecting Al-tolerant varieties of rice with low toxicity is one of the most appropriate strategies to overcome this problem.

View Article and Find Full Text PDF

Salt stress in the rice field is one of the most common abiotic stresses, reducing crop productivity, especially at reproductive stage, which is very sensitive to salt stress. The aim of this investigation was to study mRNA-related Na uptake/translocation and Na enrichment in the cellular level, leading to physiological changes, growth characteristics, and yield attributes in FL530 [salt-tolerant genotype; carrying SKC1 (in relation to high-affinity potassium transporters controlling Na and K translocation) and qSt1b (linking to salt injury score) QTLs] and KDML105 (salt-sensitive cultivar; lacking both QTLs) parental lines and 221-48 (carrying SKC1 and qSt1b QTLs) derived from BILs (backcross introgression lines) at 50% flowering of rice, under 150-mM NaCl until harvesting process. The upregulation of OsHKT1;5 (mediating Na exclusion into xylem parenchyma cells) and OsNHX1 (Na/H exchanger to secrete Na into vacuole) and downregulation of OsHKT2;1 and OsHKT2;2 (mediating Na restriction in the roots, leaf sheath and older leaves) in cvs.

View Article and Find Full Text PDF