Publications by authors named "Suriya Prakash Ganesan"

Critical soil suctions (threshold, tipping point, and permanent wilting) corresponding to initial drought response, near-death stage, and complete mortality, respectively; is essential for formulating irrigation schemes of vegetation grown in compacted soil under drought conditions. The effect of soil types on these critical soil suctions are unexplored and is crucial in understanding the soil-specific plant water functions. This study aims to establish the drought response of Axonopus compressus (grass), based on stomatal conductance (g) and chlorophyll fluorescence parameters (CI) grown in different soil types.

View Article and Find Full Text PDF

Sustainable biomaterials such as natural fibers and biochars have been increasingly used in green infrastructures such as landfill covers for its dual-advantages of climate change mitigation and waste management. The existing studies did not systematically discuss the comparison on how biochar (stable carbon) and fiber (likely degradable), influence plant growth and water retention abilities in unsaturated soils. Also, the effect of photochemistry in the amended soils has rarely been investigated.

View Article and Find Full Text PDF

Permanent wilting point (PWP) is generally used to ascertain plant resistance against abiotic drought stress and designated as the soil water content (θ) corresponding to soil suction (ψ) at 1500 kPa obtained from the soil water retention curve. Determination of PWP based on only pre-assumed ψ may not represent true wilting condition for soils with contrasting water retention abilities. In addition to ψ, there is a need to explore significance of additional plant parameters (i.

View Article and Find Full Text PDF

Biochar amended soil (BAS) has been explored as a cover material for geo-environmental applications such as landfill cover due to its vegetation potential. Soil erosion in these infrastructures can progressively lead to failure and hamper the workability of the system. BAS is compacted for geo-environmental applications, unlike agricultural soil, which are loose in nature.

View Article and Find Full Text PDF