Expert Opin Ther Targets
November 2022
Introduction: In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy.
View Article and Find Full Text PDFAim: Coeliac disease (CD) is a chronic digestive disorder which presents in diverse ways and is under-diagnosed. The purpose of this study was to provide insights into suspected CD among Russian schoolchildren, through defining the percentage of participants in an 'at-risk' group for CD in a paediatric cohort, by means of a questionnaire as a primary screening tool.
Methods: Russian school children of both sexes age 7-18 years were enrolled in a population-based study to identify individuals affected by CD.
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression.
View Article and Find Full Text PDFThe hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions.
View Article and Find Full Text PDFTaken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway.
View Article and Find Full Text PDFCertain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis.
View Article and Find Full Text PDFWhile viewed as the "guardian of the genome", the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases.
View Article and Find Full Text PDFAs the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation.
View Article and Find Full Text PDFAs basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures.
View Article and Find Full Text PDFIn the context of a post-antibiotic era, the phenomenon of microbial allolysis, which is defined as the partial killing of bacterial population induced by other cells of the same species, may take on greater significance. This phenomenon was revealed in some bacterial species such as and , and has been suspected to occur in some other species or genera, such as enterococci. The mechanisms of this phenomenon, as well as its role in the life of microbial populations still form part of ongoing research.
View Article and Find Full Text PDFWhile research into the role of cathepsins has been progressing at an exponential pace over the years, research into their respective isoform proteins has been less frenetic. In view of the functional and biological potential of such protein isoforms in model systems for cancer during their initial discovery, much later they have offered a new direction in the field of cathepsin basic and applied research. Consequently, the analysis of such isoforms has laid strong foundations in revealing other important regulatory aspects of the cathepsin proteins in general.
View Article and Find Full Text PDFCysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies.
View Article and Find Full Text PDFThe process of protein post-translational modifications (PTM) is one of the critical mechanisms of regulation of many cellular processes, which makes it an attractive target for various viruses. Since viruses cannot replicate on their own, they have developed unique abilities to alter metabolic and signaling cell pathways, including protein PTMs, to ensure faithful replication of their genomes. This review describes several ways of how lysine-specific PTMs are used by various viruses to ensure its successful invasion and replication.
View Article and Find Full Text PDFThe recent developments in Cathepsin protease research have unveiled a number of key observations which are fundamental to further our understanding of normal cellular homeostasis and disease. By far, the most interesting and promising area of Cathepsin biology stems from how these proteins are linked to the fate of living cells through the phenomenon of Lysosomal Leakage and Lysosomal Membrane Permeabilisation. While extracellular Cathepsins are generally believed to be of central importance in tumour progression, through their ability to modulate the architecture of the Extracellular Matrix, intracellular Cathepsins have been established as being of extreme significance in mediating cell death through Apoptosis.
View Article and Find Full Text PDFIn keeping with recent developments in basic research; the importance of the Cathepsins as targets in cancer therapy have taken on increasing importance and given rise to a number of key areas of interest in the clinical setting. In keeping with driving basic research in this area in a translational direction; recent findings have given rise to a number of exciting developments in the areas of cancer diagnosis; prognosis and therapeutic development. As a fast-moving area of research; the focus of this review brings together the latest findings and highlights the translational significance of these developments.
View Article and Find Full Text PDFAlbumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
View Article and Find Full Text PDFBrain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer.
View Article and Find Full Text PDFCurrently, immunotherapy is attracting a lot of attention and may potentially become a leading approach in the treatment of cancer. One emerging therapeutic, the chimeric-antigen receptor T-cell adoptive immunotherapy (CAR-T) is showing remarkable efficacy in the treatment of several B-cell malignancies. The popularity of CAR-T has been founded on two CAR T-cell products recently approved by FDA (during 2017) in the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia and B-cell lymphoma.
View Article and Find Full Text PDFThe WWP2 E3 ubiquitin ligase has previously been shown to regulate TGFβ/Smad signalling activity linked to epithelial-mesenchymal transition (EMT). Whilst inhibitory I-Smad7 was found to be the preferred substrate for full-length WWP2-FL and a WWP2-C isoform, WWP2-FL also formed a stable complex with an N-terminal WWP2 isoform (WWP2-N) in the absence of TGFβ, and rapidly stimulated activating Smad2/3 turnover. Here, using stable knockdown experiments we show that specific depletion of individual WWP2 isoforms impacts differentially on Smad protein levels, and in WWP2-N knockdown cells we unexpectedly find spontaneous expression of the EMT marker vimentin.
View Article and Find Full Text PDFUbiquitination of protein species in regulating signal transduction pathways is universally accepted as of fundamental importance for normal development, and defects in this process have been implicated in the progression of many human diseases. One pathway that has received much attention in this context is transforming growth factor-beta (TGF-β) signalling, particularly during the regulation of epithelial-mesenchymal transition (EMT) and tumour progression. While E3-ubiquitin ligases offer themselves as potential therapeutic targets, much remains to be unveiled regarding mechanisms that culminate in their regulation.
View Article and Find Full Text PDFTGFβ signals through serine/threonine kinase receptors and intracellular Smad transcription factors. An important regulatory step involves ubiquitination of Smads and/or TGFβ receptors by specific ubiquitin ligases, in a process that can be reversed by the deubiquitinating enzyme UCH37. Here, to explore the physiological role of UCH37 in TGFβ signalling we have generated stable and inducible HaCAT keratinocyte and Colo-357 pancreatic carcinoma cell lines mis-expressing UCH37.
View Article and Find Full Text PDFThe urocortin (UCN) hormones UCN1 and UCN2 have been shown previously to confer significant protection against myocardial ischaemia/reperfusion (I/R) injury; however, the molecular mechanisms underlying their action are poorly understood. To further define the transcriptional effect of UCNs that underpins their cardioprotective activity, a microarray analysis was carried out using an in vivo rat coronary occlusion model of I/R injury. Infusion of UCN1 or UCN2 before the onset of reperfusion resulted in the differential regulation of 66 and 141 genes respectively, the majority of which have not been described previously.
View Article and Find Full Text PDF