The increase in emerging drug resistant Gram-negative bacterial infections is a global concern. In addition, there is growing recognition that compromising the microbiota through the use of broad-spectrum antibiotics can impact long term patient outcomes. Therefore, there is the need to develop new bactericidal strategies to combat Gram-negative infections that would address these specific issues.
View Article and Find Full Text PDFTo combat antimicrobial infections, new active molecules are needed. Antimicrobial peptides, ever abundant in nature, are a fertile starting point to develop new antimicrobial agents but suffer from low stability, low specificity, and off-target toxicity. These drawbacks have limited their development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2018
Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries.
View Article and Find Full Text PDFHomochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs.
View Article and Find Full Text PDFH2 relaxin is a pleiotropic peptide hormone with clinical potential. Here we report on the reaction and use of hexafluorobenzene as an intramolecular disulfide replacement between Cys10 and Cys15 in the A-chain of H2 relaxin. Using flow-based Fmoc solid-phase peptide synthesis methodology we were able to obtain high-quality H2 relaxin fragments that were previously reported as challenging to synthesize.
View Article and Find Full Text PDFWe report the convergent total synthesis of two proteins: DARPin pE59 and Bacillus amyloliquefaciens RNase (Barnase). Leveraging our recently developed fast-flow peptide-synthesis platform, we rapidly explored numerous conditions for the assembly of long polypeptides, and were able to mitigate common side reactions, including deletion and aspartimide products. We report general strategies for improving the synthetic quality of difficult peptide sequences with our system.
View Article and Find Full Text PDFA flow-based solid-phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 min under automatic control or every 3 min under manual control is described. This is accomplished by passing a stream of reagent through a heat exchanger into a low volume, low backpressure reaction vessel, and through a UV detector.
View Article and Find Full Text PDFLiving cells depend upon the detection of chemical signals for their existence. Eukaryotic cells can sense a concentration difference as low as a few per cent across their bodies. This process was previously suggested to be limited by the receptor-ligand binding fluctuations.
View Article and Find Full Text PDF