Publications by authors named "Suria Jahan"

Small molecules have enabled expansion of hematopoietic stem and progenitor cells (HSPCs), but limited knowledge is available on whether these agonists can act synergistically. In this work, we identify a stem cell agonist in AA2P and optimize a series of stem cell agonist cocktails (SCACs) to help promote robust expansion of human HSPCs. We find that SCACs provide strong growth-promoting activities while promoting retention and function of immature HSPC.

View Article and Find Full Text PDF

Background Aims: The use of effective methods for the cryopreservation of hematopoietic stem cells (HSCs) is vital to retain the maximum engraftment activity of cord blood units (CBUs). Current protocols entail the use of dimethyl sulfoxide (DMSO) as intracellular cryoprotective agent (CPA) and dextran and plasma proteins as extracellular CPAs, but DMSO is known to be cytotoxic, and its infusion in patients is associated with mild to moderate side effects. However, new, commercially available, DMSO-free cryopreservation solutions have been developed, but their capacity to protect HSCs remains poorly investigated.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC) transplantation is a well-established procedure for the treatment of many blood related malignancies and disorders. Before transplantation, HSC are collected and cryopreserved until use. The method of cryopreservation should preserve both the number and function of HSC and downstream progenitors responsible for long- and short-term engraftment, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Platelet engraftment after cord blood transplantation is challenging due to ice recrystallization, which damages stem and progenitor cells during freezing and thawing.
  • The study tested an ice recrystallization inhibitor (IRI 2) to see if it could improve the recovery and engraftment of hematopoietic stem cells in cryopreserved cord blood units (CBUs) by using a mouse model.
  • Results showed that CBUs treated with IRI 2 resulted in significantly higher levels of human platelets and better bone marrow engraftment without harming the cells' ability to differentiate and self-renew.
View Article and Find Full Text PDF

Ex vivo expansion of hematopoietic stem cell (HSCs) and progenitors may one day overcome the slow platelet engraftment kinetics associated with umbilical cord blood transplantation. Serum-free medium conditioned with osteoblasts (i.e.

View Article and Find Full Text PDF

Coculture of hematopoietic stem cells (HSC) with primary stromal cells from HSC niches supports the maintenance and expansion of HSC and progenitors ex vivo. However, a major drawback is the availability of primary human samples for research and clinical applications. We investigated the use of in vitro derived osteoblasts as a new source of feeder cells and characterized the molecular pathways that mediate their growth-promoting activities.

View Article and Find Full Text PDF

The success of hematopoietic stem cell transplantation depends in part on the number and the quality of cells transplanted. Cryoinjuries during freezing and thawing reduce the ability of hematopoietic stem and progenitor cells (HSPCs) to proliferate and differentiate after thawing. Up to 20% of the patients undergoing umbilical cord blood (UCB) transplant experience delayed or failed engraftment, likely because of the inadequate hematopoietic potency of the unit.

View Article and Find Full Text PDF