Front Endocrinol (Lausanne)
February 2024
Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion.
View Article and Find Full Text PDFERK1c is an alternatively spliced isoform of ERK1 that specifically regulates mitotic Golgi fragmentation, which allows division of the Golgi during mitosis. We have previously shown that ERK1c translocates to the Golgi during mitosis where it is activated by a resident MEK1b to induce Golgi fragmentation. However, the mechanism of ERK1c functions in the Golgi remained obscure.
View Article and Find Full Text PDFAim: To study the role of PARP-1 in EMT of non-small cell lung carcinoma.
Materials And Methods: We used H1299 and H460 lung cancer cells for knockdown study of PARP-1 using shPARP-1 lentiviral particle. We performed western blotting, confocal microscopy, semi-quantitative PCR, wound healing and colony formation assays.
Parkinson's disease (PD) is the most common progressive neurodegenerative disease known to impart bradykinesia leading to diverse metabolic complications. Currently, scarcity of effective drug candidates against this long-term devastating disorder poses a big therapeutic challenge. Here, we have synthesized biocompatible, polycrystalline, and uniform piperine-coated gold nanoparticles (AuNPs) to specifically target paraquat-induced metabolic complications both in and SH-SY5Y cells.
View Article and Find Full Text PDFAims: Insensitivity of cancer cells to therapeutic drugs is the most daunting challenge in cancer treatment. The mechanism of developing chemo-resistance is only partly understood to date. In continuation of some earlier reports, we hypothesize that KLF4, a key transcription factors that also has a crucial role in maintaining the stemness in cancer cells, may offer a basis for chemo-resistance.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK) cascades are central signaling pathways that play a central role in the regulation of most stimulated cellular processes including proliferation, differentiation, stress response and apoptosis. Currently 4 such cascades are known, each termed by its downstream MAPK components: the extracellular signal-regulated kinase 1/2 (ERK1/2), cJun-N-terminal kinase (JNK), p38 and ERK5. One of the hallmarks of these cascades is the stimulated nuclear translocation of their MAPK components using distinct mechanisms.
View Article and Find Full Text PDFGene expression is crucial and tightly regulated to steer the development, differentiation, proliferation and even apoptosis of a cell. Each cell and tissue type shows a unique repertoire of transcription factors. Tissue micro-environmental regulation of epigenetic signature of a gene has been documented in many cases.
View Article and Find Full Text PDFPARP1 trapping at DNA lesion by pharmacological inhibitors has been exploited in several cancers exhibiting defects in DNA repair mechanisms. PARP1 hyperactivation is involved in therapeutic resistance in multiple cancers. The role of PARP1 in cervical cancer (CC) resistance and implication of PARP inhibitor is yet to be elucidated.
View Article and Find Full Text PDFCell cycle regulators cyclin D1 and cyclin E2 function in G1/S transition by activating downstream cyclin-dependent kinases. Deregulated expression of these cyclins has been reported in various cancers. However, little is known about their clinical significance in gastric carcinoma.
View Article and Find Full Text PDFCXCL12 is a small pro-inflammatory chemo-attractant cytokine which signals through chemokine receptor CXCR4. The importance of CXCL12/CXCR4 axis is coming to the fore in several divergent signaling pathway-initiating signals related to cell survival and/or proliferation and cancer metastasis. In the present study we have investigated whether deregulation in CXCR4 signaling (as a consequence of deregulated expression of CXCL12) modulate the metastatic potential of cervical carcinoma cells.
View Article and Find Full Text PDFMinichoromosome maintenance (MCM) proteins play key role in cell cycle progression by licensing DNA replication only once per cell cycle. These proteins are found to be overexpressed in cervical cancer cells. In this study, we depleted MCM4, one of the MCM 2-7 complex components by RNA interference (RNAi) in four cervical cancer cell lines.
View Article and Find Full Text PDFAim: The fundamental events for cancer progression and metastases include loss of cell adhesion, cell proliferation, anchorage-independent cell growth (evading anoikis), cell migration and cell invasion. All these events leading to cancer progression happen in a favorable nurturing tumor microenvironment. This study was designed to explore the anti-tumor activity of staurosporine (a nonspecific protein kinase inhibitor) in the tumor microenvironment of cervical cancer.
View Article and Find Full Text PDFBackground: The cyclin-dependent kinase inhibitor p27(Kip1) is known to act as a putative tumor suppressor in several human cancers, including cervical cancer. Down-regulation of p27(Kip1) may occur either through transcription inhibition or through phosphorylation-dependent proteolytic degradation. As yet, the mechanism underlying p27(Kip1) down-regulation and its putative downstream effects on cervical cancer development are poorly understood.
View Article and Find Full Text PDFThe Forkhead transcription factor FOXO1, an important downstream target of phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, regulates cellular homeostasis by maintaining cell proliferation, apoptosis and viability in normal cells. Though, the function and regulation of FOXO1 is well documented in many cancers, the molecular mechanism of its regulation in cervical cancer is largely unknown. In the present study we have investigated the role of PI3K inhibition on FOXO1 regulation.
View Article and Find Full Text PDFIn the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples.
View Article and Find Full Text PDFTransmembrane roundabout receptor family members (ROBO1-ROBO4) principally orchestrate the neuronal guidance mechanism of the nervous system. Secreted glycoprotein SLITs are the most appreciated ligands for ROBOs. Recently identified ROBO4 is the key mediator of SLIT-ROBO mediated developmental and pathological angiogenesis.
View Article and Find Full Text PDFMinichromosome Maintenance (MCM) proteins play important roles in cell cycle progression by mediating DNA replication initiation and elongation. Among 10 MCM homologues MCM 2-7 form a hexamer and assemble to the pre-replication complex acting as replication licensing factors. Binding and function of MCM2-7 to pre-replication complex is regulated by MCM10 mediated binding of RECQL4 with MCM2-7.
View Article and Find Full Text PDFGlycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica.
View Article and Find Full Text PDF