In the biosynthesis of the tripyrrolic pigment prodigiosin, PigB is a predicted flavin-dependent oxidase responsible for the formation of 2-methyl-3-amylpyrrole (MAP) from a dihydropyrrole. To prove which dihydropyrrole is the true intermediate, both possibilities, 5-methyl-4-pentyl-3,4-dihydro-2H-pyrrole (5 a, resulting from transamination of the aldehyde of 3-acetyloctanal) and 2-methyl-3-pentyl-3,4-dihydro-2H-pyrrole (6, resulting from transamination of the ketone), were synthesised. Only 5 a restored pigment production in a strain of Serratia sp.
View Article and Find Full Text PDFAnalogues of prodigiosin, a tripyrrolic pigment produced by Serratia species with potent immunosuppressive and anticancer activities, have been produced by feeding synthetic analogues of the normal precursor MBC to mutants of Serratia sp. ATCC 39006 or to engineered strains of Escherichia coli; in this way it has been shown that the prodigiosin synthesising enzyme, PigC, has a relaxed substrate-specificity.
View Article and Find Full Text PDFBacterial prodiginines are a family of red-pigmented, tripyrrolic compounds that display numerous biological activities, including antibacterial, antifungal, antiprotozoal, antimalarial, immunosuppressive and anticancer properties. Recently, significant progress has been made in understanding the biosynthesis and regulation of bacterial prodiginines. An understanding of the biosynthesis of prodiginines will allow engineering of bacterial strains capable of synthesizing novel prodiginines through rational design and mutasynthesis experiments.
View Article and Find Full Text PDF