Publications by authors named "Suresh Kumar Singla"

Although, myriads of tests are routinely used, no single test can accurately predict fertilization potential of semen. The hemizona assay (HZA) has advantages in two ways: (a) it determines multitude traits of sperm and (b) it is a controlled sperm function test. In the present study, we developed homologous HZA in buffaloes to predict bull fertility.

View Article and Find Full Text PDF

We examined the effects of treatment with pulsed electromagnetic fields (PEMFs) on cumulus cells and buffalo somatic cell nuclear transfer (SCNT) embryos. PEMF treatment (30 μT for 3 hours) of cumulus cells increased ( < 0.05) the relative cell viability and cell proliferation and the expression level of , , , , , and , but decreased ( < 0.

View Article and Find Full Text PDF

Transgenic goats are ideal bioreactors for the production of therapeutic proteins in their mammary glands. However, random integration of the transgene within-host genome often culminates in unstable expression and unpredictable phenotypes. Targeting desired genes to a safe locus in the goat genome using advanced targeted genome-editing tools, such as transcription activator-like effector nucleases (TALENs) might assist in overcoming these hurdles.

View Article and Find Full Text PDF

The present study was undertaken to evaluate the effect of different concentration of FGF2 viz. 5 ng (T1), 10 ng (T2), and 20 ng/mL (T3) on cumulus cell expansion, oocyte maturation, in vitro embryo production, total cell number (TCN) of the blastocyst, and expression of the FGF2 and FGFR2 transcripts in buffalo oocytes and the embryos. Results showed that the effect of FGF2 on the diameter of buffalo COC was significantly higher (P < 0.

View Article and Find Full Text PDF

In the present study, we used a serum-free culture media to propagate goat putative spermatogonial stem cells (SSCs) and evaluated the effect of crucial growth factors on relative expression of some SSC markers and self-renewal related genes. The enriched SSCs were cultured on a homologous Sertoli cell feeder layer in KO-DMEM supplemented with 10% KOSR. Putative SSC colonies emerged between day 6 and 10 which were then characterized by the expression of numerous spermatogonial and pluripotency related markers.

View Article and Find Full Text PDF

Across farm animal species, the live birth rate obtained with somatic cell nuclear transfer (SCNT) embryos is only <2% compared with >40% obtained with in vitro fertilization (IVF) embryos, primarily due to incomplete nuclear reprogramming which results in aberrant embryonic gene expression. We used RNA sequencing to compare the global transcriptome profile of SCNT and IVF buffalo blastocysts. SCNT blastocysts expressed 17,061 transcripts, of which 941 were unique whereas, IVF blastocysts expressed 17,303 transcripts, of which 1,183 were unique.

View Article and Find Full Text PDF

Very low birth rate and a high incidence of abnormalities in offspring born from cloned embryos, which have limited the application of cloning technology on a wide scale, are believed to be because of incomplete or aberrant nuclear reprogramming. MicroRNAs (miRNAs) are involved in regulating a wide range of biological processes including reprogramming and embryonic development. Selection of suitable reference miRNAs is critical for normalization of data for accurate relative quantification of miRNAs by quantitative real-time polymerase chain reaction (qRT-PCR), which is currently the most widely used technique for quantifying miRNAs.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) self-renew and produce a large number of differentiated germ cells to maintain normal spermatogenesis. However, the growth factors crucial for SSC self-renewal and the mechanism underlying this process remain unclear. In the present study, a serum-free culture media was used to evaluate the effect of several growth factors on the expression of some SSC markers and self-renewal related genes.

View Article and Find Full Text PDF

In this study, we investigated the effect of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF) 2, and epidermal growth factor (EGF) on the expression of some self-renewal-related microRNAs (miRs) in putative buffalo spermatogonial stem cells (SSCs). The SSCs were cultured on a buffalo Sertoli cell feeder layer, colony formation was observed between 7 and 10 days. The SSC colonies expressed markers specific for undifferentiated type A spermatogonia and pluripotency markers.

View Article and Find Full Text PDF

Inhibition of ERK/MAPK pathway has been shown to decrease DNA methylation via down-regulation of DNA methyltransferases (DNMTs) in several studies suggesting that this pathway plays an important role in regulation of DNA methylation. We examined the relative expression level of seven important genes related to ERK/MAPK pathway and DNMTs (DNMT1, DNMT3a and DNMT3b) by quantitative real-time PCR in buffalo blastocysts produced by Hand-made cloning and compared it with that in blastocyst-stage embryos produced by in vitro fertilization (IVF). The expression level of six of seven genes related to ERK/MAPK pathway examined i.

View Article and Find Full Text PDF

The aim of the present study was to compare transgenic cells, containing human insulin gene kept under the control of mammary gland-specific buffalo beta-lactoglobulin promoter, and their counterparts, that is, nontransgenic cells, for examining their potential for the production of embryos following somatic cell nuclear transfer (SCNT). The gene construct was delivered into buffalo fetal fibroblasts (BFF) by nucleofection following which, the transfected cells were selected by culture in the presence of G418 for 3 weeks. Transgene integration into BFF genome was confirmed by polymerase chain reaction (PCR) and reverse transcriptase PCR.

View Article and Find Full Text PDF

Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.

View Article and Find Full Text PDF

We evaluated the suitability of 10 candidate internal control genes (ICGs), belonging to different functional classes, namely ACTB, EEF1A1, GAPDH, HPRT1, HMBS, RPS15, RPS18, RPS23, SDHA, and UBC for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of blastocyst-stage buffalo embryos produced by hand-made cloning and in vitro fertilization (IVF). Total RNA was isolated from three pools, each of cloned and IVF blastocysts (n = 50/pool) for cDNA synthesis. Two different statistical algorithms geNorm and NormFinder were used for evaluating the stability of these genes.

View Article and Find Full Text PDF

Development of precise and reproducible culture system for in vitro differentiation of embryonic stem (ES) cells into germ cells counts as a major leap forward for understanding not only the remarkable process of gametogenesis, otherwise obscured by limited availability of precursor primordial germ cells (PGCs), but in finally treating the catastrophic infertility. Taking into account the significant role of retinoic acid (RA) during in vivo gametogenesis, we designed the present study to investigate the effects of its stimulation on directing the differentiation of ES cells into germ cells. The effects of RA were analyzed across dose-and-time upon various stages of gametogenesis like PGC induction, meiosis initiation and completion, haploid cell formation and development of the final gamete (oocyte and spermatozoa).

View Article and Find Full Text PDF

Separation of X- and Y-chromosome bearing sperm has been practiced for selection of desired sex of offspring to increase the profit in livestock industries. At present, fluorescence-activated cell sorter is the only successful method for separation of X- and Y-chromosome bearing sperm. This technology is based on the differences in DNA content between these two types of sperm and has been commercialized for bovine sperm.

View Article and Find Full Text PDF

Development of precise and reproducible culture system for in vitro differentiation of embryonic stem (ES) cells into germ cells counts as a major leap forward for understanding not only the remarkable process of gametogenesis, otherwise obscured by limited availability of precursor primordial germ cells (PGCs), but in finally treating the catastrophic infertility. Taking into account the significant role of retinoic acid (RA) during in vivo gametogenesis, we designed the present study to investigate the effects of its stimulation on directing the differentiation of ES cells into germ cells. The effects of RA were analyzed across dose-and-time upon various stages of gametogenesis like PGC induction, meiosis initiation and completion, haploid cell formation and development of the final gamete (oocyte and spermatozoa).

View Article and Find Full Text PDF

The application of cloning technology on a large scale is limited by very low offspring rate primarily due to aberrant or incomplete epigenetic reprogramming. Trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferases, are widely used for altering the epigenetic status of cloned embryos. We optimized the doses of these epigenetic modifiers for production of buffalo embryos by handmade cloning and examined whether combined treatment with these epigenetic modifiers offered any advantage over treatment with the individual epigenetic modifier.

View Article and Find Full Text PDF

Use of histone deacetylase inhibitors (HDACis) is believed to improve the developmental competence and quality of cloned embryos produced. We examined the effects of treatment of buffalo fibroblasts with valproic acid (VPA), a HDACi on these cells and on embryos produced from them by hand-made cloning. VPA treatment (1.

View Article and Find Full Text PDF

Background: This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis) embryonic stem (ES) cell-like cells.

Materials And Methods: To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM) combined with WNT3A (200 ng/ml), as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml), as an inhibitor, of the pathway.

View Article and Find Full Text PDF

Cumulus cells provide cellular interactions and growth factors required for oogenesis. In vitro studies of oogenesis are limited primarily because of the paucity of their source, first trimester fetal gonads, and the small number of germ lineage precursor cells present within these tissues. In order to understand this obscure but vitally important process, the present study was designed to direct differentiation of embryonic stem (ES) cells into germ lineage cells.

View Article and Find Full Text PDF

Objective: In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli.

Materials And Methods: In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers.

View Article and Find Full Text PDF

We present the derivation, characterization, and pluripotency analysis of three buffalo embryonic stem cell (buESC) lines, from in vitro-fertilized, somatic cell nuclear-transferred, and parthenogenetic blastocysts. These cell lines were developed for later differentiation into germ lineage cells and elucidation of the signaling pathways involved. The cell lines were established from inner cell masses (ICMs) that were isolated manually from the in vitro-produced blastocysts.

View Article and Find Full Text PDF

VASA is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. In the present study, we isolated, sequenced, and characterized VASA gene in buffalo testis. Here, we demonstrated that VASA mRNA is expressed as multiple isoforms and uses four alternative transcriptional start sites (TSSs) and four different polyadenylation sites.

View Article and Find Full Text PDF

Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture.

View Article and Find Full Text PDF