A rapid flow-through immunoassay using protein A labeled gold nanoparticles (GNPs) for the qualitative detection of trypanosomosis in equine serum samples was developed. The flow-through device consisted of antigen-coated nitrocellulose membrane fixed on absorbent pads. The GNPs based detection probe was used as the colored marker.
View Article and Find Full Text PDFTrypanosomosis caused by Trypanosoma evansi, commonly known as "surra," is a wasting disease affecting equids, camels, cattle, as well as several other domestic and wild animals. No systematic information is available on disease pattern in equines for development of control and treatment strategies in endemic areas in India. The present study was undertaken with a comprehensive plan to screen large population of equines using indirect enzyme-linked immunosorbent assay to obtain epidemiological information on "surra" in different agro-climatic zones of India.
View Article and Find Full Text PDFQuinapyramine sulfate (QS) produces trypanocidal effects against the parasite but is often poorly tolerated and causes serious reactions in animals. The encapsulation of QS in chitosan-mannitol to provide sustained release would improve both the therapeutic effect of QS and the quality of life of animals treated with this formulation. QS was encapsulated into a nanoformulation prepared from chitosan, tripolyphosphate, and mannitol nanomatrix (ChQS-NPs).
View Article and Find Full Text PDFIsometamidium hydrochloride (ISMM) is an effective drug for the treatment of trypanosomosis, but it causes local and systemic toxicity. Isometamidium hydrochloride has limited therapeutic index and exhibit considerable variation in their prophylactic activities. We developed a trypanocidal nanoformulation using ISMM and polymers sodium alginate/gum acacia to enhance the efficacy of the drug at lower doses, while minimizing undesirable side effects.
View Article and Find Full Text PDFWe synthesized quinapyramine sulfate loaded-sodium alginate nanoparticles (QS-NPs) to reduce undesirable toxic effects of QS against the parasite Trypanosoma evansi, a causative agent of trypanosomosis. To determine the safety of the formulated nanoparticles, biocompatibility of QS-NPs was determined using Vero, Hela cell lines and horse erythrocytes in a dose-dependent manner. Our experiments unveiled a concentration-dependent safety/cytotoxicity (metabolic activity), genotoxicity (DNA damage, chromosomal aberrations), production of reactive oxygen species and hemolysis in QS-NPs treated cells.
View Article and Find Full Text PDFThe present immuno-diagnostic method using soluble antigens from whole cell lysate antigen for trypanosomosis have certain inherent problems like lack of standardized and reproducible antigens, as well as ethical issues due to in vivo production, that could be alleviated by in vitro production. In the present study we have identified heat shock protein 70 (HSP70) from T. evansi proteome.
View Article and Find Full Text PDFCpG oligodeoxynucleotides (CpG-ODN) stimulate immune cells from a wide spectrum of mammalian species. Class C CpG-ODN is relatively stable and has the combined immune effects of both A and B classes of CpG-ODN. Trypanosoma evansi produces the state of immuno-suppression in the infected hosts.
View Article and Find Full Text PDFTrypanosoma evansi is the causative agent of surra, which is the most common and widespread trypansomal disease. The infection is mainly restricted to animals, but it has also been documented in human. Trypanosomes possess the thick immunogenic surface coat known as variant surface glycoprotein (VSG).
View Article and Find Full Text PDFAim: To reduce the dose, toxic effects and to ensure sustained release of quinapyramine sulfate (QS), a highly effective drug against Trypanosoma evansi.
Materials & Methods: QS-loaded sodium alginate nanoparticles (QS-NPs) were formed by emulsion-crosslinking technology using dioctyl-sodium-sulfosuccinate and sodium alginate. The formulation was characterized for size, stability, morphology and functional groups by a zetasizer, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy.
Trypanosoma evansi infection typically produces wasting disease, but it can also develop into a neurological or meningoencephalitis form in equids. Trypanosomiasis in horses was treated with quinapyramine sulfate, and all the 14 infected animals were recovered clinically. After clinical recovery, four animals developed a neurological form of the disease at various intervals.
View Article and Find Full Text PDFEquine piroplasmosis is a tick-transmitted protozoan disease caused by Theileria equi and/or Babesia caballi. In the present study, we expressed a 53kDa protein from the truncated EMA-2 gene of T. equi (Indian strain) and developed EMA-2ELISA using this expressed protein.
View Article and Find Full Text PDFEquine influenza is a contagious viral disease that affects all members of the family Equidae, i.e., horses, donkeys and mules.
View Article and Find Full Text PDFJ Biol Chem
December 2010
Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals.
View Article and Find Full Text PDFBackground: Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity.
View Article and Find Full Text PDF