Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons.
View Article and Find Full Text PDFExperiments were carried out in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (50 nL) of N-methyl-d-aspartic acid (1, 5, and 10 mmol/L), but not artificial cerebrospinal fluid, into the hypothalamic arcuate nucleus (ARCN) elicited increases in mean arterial pressure (5.7+/-0.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2009
Neurons that immunostain for alpha-melanocyte stimulating hormone (alpha-MSH) have been identified in the nucleus ambiguus (nAmb). The presence of mRNA for melanocortin type 4 receptors (MC4Rs) has also been reported in this nucleus. On the basis of this information, it was hypothesized that activation of MC4Rs in the nAmb may play a role in the regulation of cardiac function.
View Article and Find Full Text PDFViolence and aggression are major causes of death and injury, thus constituting primary public health problems throughout much of the world costing billions of dollars to society. The present review relates our understanding of the neurobiology of aggression and rage to pharmacological treatment strategies that have been utilized and those which may be applied in the future. Knowledge of the neural mechanisms governing aggression and rage is derived from studies in cat and rodents.
View Article and Find Full Text PDFFeline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems.
View Article and Find Full Text PDFFeline defensive rage is a form of aggression occurring in nature in response to a threatening condition and is elicited under laboratory conditions by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Since it has recently been shown that cytokines can modulate neurotransmitter release, the present study was designed to determine the effects of administration of interleukin 2 (IL-2) into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of relatively low doses of IL-2 into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus.
View Article and Find Full Text PDFThe present study sought to determine the effects of long-term kindled seizures of the basal amygdala upon immune function in rat, utilizing the thymus, as a principal target for study. Histopathology from kindled Sprague-Dawley rats revealed the presence of epithelial cell thymoma in 70% of these rats. The results revealed an increased rate of apoptosis and proliferation in thymic epithelial cells.
View Article and Find Full Text PDFRecent studies conducted in our laboratory have demonstrated marked increases in both serum leptin levels and colony numbers in bone marrow progenitor cells following long-term kindled seizures in rats. The present study sought to determine whether such changes in hematopoietic functions following kindling are linked to increased serum leptin levels. Kindled stage V seizures were induced for 30 days in Sprague-Dawley rats by stimulation of the basal complex of amygdala.
View Article and Find Full Text PDFDefensive rage in the cat occurs naturally in response to a threat and is also elicited by electrical or chemical stimulation over the rostro-caudal extent of the medial hypothalamus and dorsolateral aspect of the periaqueductal gray (PAG). This behavior is mediated over a descending projection from the hypothalamus to the midbrain PAG. The underlying hypothesis for the present study was that medial hypothalamic defensive rage neurons are excited in two ways: by NK(1) receptors and by an ascending input from the PAG.
View Article and Find Full Text PDF