In an attempt to develop low cost, energy efficient and advanced electrode material for lithium-ion batteries (LIBs), waste-to-wealth derived as well as value added spent battery materials as potential alternatives assume paramount importance. By combining the low lithiation potential advantages, one can arrive at energy efficient electrodes bestowed with cost effective and eco-friendly benefits required for practical LIB applications. In the present study, Zn and Mn-salts along with C were successfully extracted from the spent zinc carbon batteries through a simple and efficient hydrometallurgy approach and decomposed thermally to obtain ZnMnO at 350 °C for 12 h and 450 °C for 3 h.
View Article and Find Full Text PDFThe study explores biogenic nitrogen doped carbon microspheres derived from resorcinol, formaldehyde (BNCMs), for battery application. Ureolytic bacteria were used to produce biogenic ammonia in the form of ammonium carbonate and ammonium bicarbonate. Copolymerization of resorcinol, formaldehyde and biogenic ammonia at 60-80 °C produces BNCMs.
View Article and Find Full Text PDF