Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction.
View Article and Find Full Text PDFLong RNA molecules are at the core of gene regulation across all kingdoms of life, while also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with nonrepeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers.
View Article and Find Full Text PDFBranched polymers can be represented as tree graphs. A one-to-one correspondence exists between a tree graph comprised of N labeled vertices and a sequence of N - 2 integers, known as the Prüfer sequence. Permutations of this sequence yield sequences corresponding to tree graphs with the same vertex-degree distribution but (generally) different branching patterns.
View Article and Find Full Text PDFTo optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific because the CP concentration exceeds the largest dissociation constant for CP-RNA binding. Consequently, the RNA is saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids.
View Article and Find Full Text PDFFor many viruses, the packaging of a single-stranded RNA (ss-RNA) genome is spontaneous, driven by capsid protein-capsid protein (CP) and CP-RNA interactions. Furthermore, for some multipartite ss-RNA viruses, copackaging of two or more RNA molecules is a common strategy. Here we focus on RNA copackaging in vitro by using cowpea chlorotic mottle virus (CCMV) CP and an RNA molecule that is short (500 nucleotides (nts)) compared to the lengths (≈3000 nts) packaged in wild-type virions.
View Article and Find Full Text PDFSeveral heterocycles such as furanones, pyrrolones, and indolizines, which are of pharmacological importance, are easily accessed via the Pt(II)-catalyzed heterocyclization/1,2-migration of propargylic ketols or hydroxy imine derivatives. This method sidesteps the challenges of traditional heteroaromatic oxygenation strategies such as regioselectivity and functional group tolerance in the syntheses of these heterocycles.
View Article and Find Full Text PDFPt(II)-catalyzed cycloisomerization of aziridinyl propargylic esters affords 1,2-dihydropyridines with regiodefined installation of substituents. A mild conversion of the 1,2-dihydropyridines to the corresponding substituted pyridines as well as chirality retention from the aziridinyl propargylic ester substrates have been demonstrated.
View Article and Find Full Text PDF