Publications by authors named "Surendra Thapa"

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

Understanding the factors that govern gas absorption in ionic liquids is critical to the development of high-capacity solvents for catalysis, electrochemistry, and gas separations. Here, we report experimental probes of liquid structure that provide insights into how free volume impacts the O absorption properties of ionic liquids. Specifically, we establish that isothermal compressibility─measured rapidly and accurately through small-angle X-ray scattering─reports on the size distribution of transient voids within a representative series of ionic liquids and is correlated with O absorption capacity.

View Article and Find Full Text PDF

The development of materials that reversibly store high densities of thermal energy is critical to the more efficient and sustainable utilization of energy. Herein, we investigate metal-organic compounds as a new class of solid-liquid phase-change materials (PCMs) for thermal energy storage. Specifically, we show that isostructural series of divalent metal amide complexes featuring extended hydrogen bond networks can undergo tunable, high-enthalpy melting transitions over a wide temperature range.

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates a new Ni-catalyzed method to selectively combine vinylarenes with alkyl halides and arylzinc compounds, resulting in the formation of 1,1-diarylalkanes.
  • The reaction is effective with a variety of alkyl halides (primary, secondary, tertiary) and different types of arylzinc reagents.
  • Mechanistic analysis suggests the process follows a catalytic cycle involving Ni in different oxidation states, with the key step being a rate-limiting single electron transfer that leads to halogen atom abstraction.
View Article and Find Full Text PDF

We disclose a [(PhO)P]/NiBr-catalyzed regioselective β,δ-diarylation of unactivated olefins in ketimines with aryl halides and arylzinc reagents. This diarylation proceeds at remote locations to the carbonyl group to afford, after simple H workup, diversely substituted β,δ-diarylketones that are otherwise difficult to access readily with existing methods. Deuterium-labeling and crossover experiments indicate that diarylation proceeds by ligand-enabled contraction of transient nickellacycles.

View Article and Find Full Text PDF

We report a Ni-catalysed diarylation of unactivated olefins in dimethylpyridylvinylsilane by intercepting Heck C(sp)-NiX intermediates, derived from aryl halides, with arylzinc reagents. This approach utilizes a modifiable pyridylsilyl moiety as a coordinating group that plays a dual role of intercepting oxidative addition species to promote Heck carbometallation, and stabilizing the Heck C(sp)-NiX intermediates as transient metallacycles to suppress β-hydride elimination, and facilitate transmetalation/reductive elimination. This method affords 1,2-diarylethylsilanes, which can be readily oxidized to 1,2-diarylethanols that occur as structural motifs in 3-aryl-3,4-dihydroisocoumarin and dihydrostilbenoid natural products.

View Article and Find Full Text PDF

We disclose a (terpy)NiBr-catalyzed reaction protocol that regioselectively difunctionalizes unactivated olefins with tethered alkyl halides and arylzinc reagents. The reaction shows an excellent functional group tolerance (such as ketones, esters, nitriles, and halides) and a moderate to good level of diastereoselectivity. The current cyclization/cross-coupling also tolerates molecules containing base-sensitive racemizable stereocenters, which are preserved without racemization during the reaction.

View Article and Find Full Text PDF

We disclose a strategy for Ni-catalyzed dicarbofunctionalization of olefins in styrenes by intercepting Heck C(sp)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometalation and stabilizing the Heck C(sp)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely substituted 1,1,2-triarylethyl products that occur as structural motifs in various natural products.

View Article and Find Full Text PDF

We present a strategy that difunctionalizes unactivated olefins in 1,2-positions with two carbon-based entities. This method utilizes alkyl/arylzinc reagents derived from olefin-tethered alkyl/aryl halides that undergo radical cyclization to generate C(sp)-Cu complexes in situ, which are intercepted with aryl and heteroaryl iodides. A variety of (arylmethyl)carbo- and heterocycles (N, O) can be synthesized with this new method.

View Article and Find Full Text PDF

We report the first example of Cu(I)-catalysed coupling of alkylboron reagents with aryl and heteroaryl iodides that affords products in good to excellent yields. Preliminary mechanistic studies with alkylborates indicate that the anionic (alkoxy)(alkyl)borates, generated from alkyllithium and alkoxyboron reagents, undergo disproportionation to anionic dialkylborates and that both anionic alkylborates are active for transmetalation to a Cu(I)-catalyst. Results from a radical clock experiment and the Hammett plot imply that the reaction likely proceeds via a non-radical pathway.

View Article and Find Full Text PDF

We report the first example of a very general Cu-catalyzed cross-coupling of organoaluminum reagents with organohalides. The reactions proceed for the couplings of alkyl-, aryl-, and alkynylaluminum reagents with aryl and heteroaryl halides and vinyl bromides, affording the cross-coupled products in good to excellent yields. Both primary and secondary alkylaluminum reagents can be utilized as organometallic coupling partners.

View Article and Find Full Text PDF

Reported herein is an unprecedented ligand-free copper-catalyzed cross-coupling of alkyl-, aryl-, and alkynylzinc reagents with heteroaryl iodides. The reaction proceeds at room temperature for the coupling of primary, secondary, and tertiary alkylzinc reagents with heteroaryl iodides without rearrangement. An elevated temperature (100 °C) is required for aryl-heteroaryl and alkynyl-heteroaryl couplings.

View Article and Find Full Text PDF

Copper is emerging as a viable catalytic metal for cross-coupling reactions to construct carbon-carbon (C-C) bonds. Recent revelations that Cu-catalysts can execute with high efficacy the cross-couplings of a variety of organometallic reagents, including organomagnesium, organoboron, organosilicon, organoindium and organomanganese, with alkyl, aryl and heteroaryl halides clearly demonstrate the versatility of Cu-based catalytic systems in conducting these reactions. In addition, Cu-catalysts are exhibiting a unique reactivity pattern that allows ligandless cross-coupling for aryl-heteroaryl and heteroaryl-heteroaryl bond formation, a transformation that generally requires special custom-designed ligands with Pd-catalysts.

View Article and Find Full Text PDF

An unprecedented Cu(I)-catalysed cross-coupling of arylzirconium reagents with aryl and heteroaryl iodides is reported. Mechanistic studies with a Cp2ZrAr2 complex revealed that Cp2Zr(Ar)(Cl) is the reactive species that undergoes transmetalation with (PN-1)CuI. In addition, experiments with radical probes indicated that the reaction proceeds via a non-radical pathway.

View Article and Find Full Text PDF

An efficient copper(I)-catalyzed coupling of triaryl and trialkylindium reagents with aryl iodides and bromides is reported. The reaction proceeds at low catalyst loadings (2 mol%) and generally only requires 0.33 equivalents of the triorganoindium reagent with respect to the aryl halide as all three organic nucleophilic moieties of the reagent are transferred to the products through consecutive transmetalations.

View Article and Find Full Text PDF

An efficient Cu(I)-catalyzed Suzuki-Miyaura reaction was developed for the coupling of aryl- and heteroarylboronate esters with aryl and heteroaryl iodides at low catalyst loadings (2 mol %). The reaction proceeds under ligand-free conditions for aryl-heteroaryl and heteroaryl-heteroaryl couplings. We also conducted the first detailed mechanistic studies by synthesizing [(PN-2)CuI]2, [(PN-2)CuF]2, and (PN-2)CuPh (PN-2 = o-(di-tert-butylphosphino)-N,N-dimethylaniline) and demonstrated that [(PN-2)CuF]2 is the species that undergoes transmetalation with arylboronate esters.

View Article and Find Full Text PDF

A Cu(I)-catalyzed Hiyama coupling was achieved, which proceeds in the absence of an ancillary ligand for aryl-heteroaryl and heteroaryl-heteroaryl couplings. A P,N-ligand is required to obtain the best product yields for aryl-aryl couplings. In addition to facilitating transmetalation, CsF is also found to function as a stabilizer of the [CuAr] species, potentially generated as an intermediate after transmetalation of aryltriethoxysilanes with Cu(I)-catalysts in the absence of ancillary ligands.

View Article and Find Full Text PDF

In the title salt, C5H8N3 (+)·C3H3O4 (-), the 3,4-di-amino-pyridinium cation is almost planar, with an r.m.s.

View Article and Find Full Text PDF