Publications by authors named "Surendra Raj Puri"

Unequivocally, Pb as a harmful substance damaging children's brain and nerve systems, thereby causing behavior and learning disabilities, should be detected much lower than the elevated blood lead for children, 240 nM, endorsed by US CDC considering the unknown neurotoxic effects, yet the ultralow detection limit up to sub-ppb level remains a challenge due to the intrinsically insufficient sensitivity in the current analytical techniques. Here, we present nanoemulsion (NE)-integrated single-entity electrochemistry (NI-SEE) toward ultrasensitive sensing of blood lead using Pb-ion-selective ionophores inside a NE, i.e.

View Article and Find Full Text PDF

Here, we report on the successful demonstration and application of carbonate (CO) ion-selective amperometric/voltammetric nanoprobes based on facilitated ion transfer (IT) at the nanoscale interface between two immiscible electrolyte solutions. This electrochemical study reveals critical factors to govern CO-selective nanoprobes using broadly available Simon-type ionophores forming a covalent bond with CO, i.e.

View Article and Find Full Text PDF

We demonstrate a new electroanalytical technique using nanoemulsions (NEs) as a nanoextractor combined with single entity electrochemistry (SEE) to separate, preconcentrate analytes from bulk media, and even detect them in situ, enabling ultratrace level analysis. This approach is based on our hypothesis that the custom-designed NEs would enable to effectively scavenge compounds from bulk media. Herein, we use Pluronic F-127 functionalized NEs to extract, preconcentrate target analytes e.

View Article and Find Full Text PDF

New electrochemical approaches have been applied to investigate nanoemulsions (NEs) for their nanostructures and the relevant electrochemical activity by single-entity electrochemistry (SEE). Herein, we make highly monodisperse NEs with ∼40 nm diameter, composed of biocompatible surfactants, castor oil as plasticizers, and ion exchangers. Dynamic light scattering (DLS) measurements with periodically varying surfactant to oil ratios provide us with a structural implication about uneven distributions of incorporating components inside NEs.

View Article and Find Full Text PDF

Effective delivery and accumulation of antimicrobial agents into the microbial organism is essential for the treatment of bacterial infections. Transports of hydrophilic drug molecules, however, encounter a robust barrier of hydrophobic double membrane cell envelope, thus, leading to drug-resistance in Gram-negative bacteria. Accordingly, a deeper understanding about a transit of charged molecules through a bacterial membrane is needed to remediate the antibacterial resistance.

View Article and Find Full Text PDF