Artif Cells Nanomed Biotechnol
December 2024
Malaria is a mosquito-borne infectious disease that is caused by the parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria.
View Article and Find Full Text PDFWith a lack of targeted therapy and significantly high metastasis, heterogeneity, and relapse rates, Triple-Negative Breast Cancer (TNBC) offers substantial treatment challenges and demands more chemotherapeutic interventions. In the present study, indole-endowed thiadiazole derivatives have been synthesized and screened for antiproliferative potency against the triple-negative breast cancer MDA-MB-231 cell line. Compound 4 h, possessing chlorophenyl moiety, displays the best anticancer potency (IC: 0.
View Article and Find Full Text PDFIndoleamine-2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme known to catalyse the initial and rate limiting step of kynurenine pathway of l-tryptophan metabolism. IDO1 enzyme over expression plays a crucial role in progression of cancer, malaria, multiple sclerosis and other life-threatening diseases. Several efforts over the last two decades have been invested by the researchers for the discovery of different IDO1 inhibitors and the plasticity of the IDO1 enzyme ligand binding pocket provide ample opportunities to develop new heterocyclic scaffolds targeting this enzyme.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2022
In this study, roots extract has been employed for the biosynthesis of silver nanoparticles (AgNPs). The appearance of reddish-brown colour followed by absorption peak of AgNPs at 408 nm through UV-vis spectrophotometry suggested biosynthesis of AgNPs. The size of the particles ranged from 90-113 nm, confirmed using DLS and TEM along with zeta potential of -25.
View Article and Find Full Text PDFThe target-based discovery of therapeutics against apicoplast, an all-important organelle is an overriding perspective. MEP pathway, an accredited drug target provides an insight into the importance of apicoplast in the survival of the parasite. In this study, we present the rational design strategy employing sustainable catalysis for the synthesis of benzodiazepine (BDZ) conformers followed by their biological evaluation as prospective inhibitors against the potential target of the IPP pathway, 1-deoxy-D-xylulose-5-phosphatereductoisomerase (DXR).
View Article and Find Full Text PDFThe current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO, temperature and ratio of extract to AgNO on response viz.
View Article and Find Full Text PDFThe present study aims at developing PGMD (poly-glycerol-malic acid-dodecanedioic acid)/curcumin nanoparticles based formulation for anticancer activity against breast cancer cells. The nanoparticles were prepared using both the variants of PGMD polymer (PGMD 7:3 and PGMD 6:4) with curcumin (i.e.
View Article and Find Full Text PDFThis study aims to determine the anticancer efficacy of diosgenin encapsulated poly-glycerol malate co-dodecanedioate (PGMD) nanoparticles. Diosgenin loaded PGMD nanoparticles (variants 7:3 and 6:4) were synthesized by the nanoprecipitation method. The synthesis of PGMD nanoparticles was systematically optimized employing the Box-Behnken design and taking into account the influence of various independent variables such as concentrations of each PGMD, diosgenin and PF-68 on the responses such as size and PDI of the particles.
View Article and Find Full Text PDFA surge to increase the production via usage of chemicals at both industrial and agricultural arena has forced humans to be routinely and imprudently exposed to a wide variety of endocrine disrupting chemicals. The overall aim of the study was to evaluate possible relation that might exist between bisphenol-A (BPA) and the adipose tissue hormones, and further impact on adiposopathy. In the present study, the role of BPA, an "endocrine disruptor" with respect to adiposopathy was evaluated in type 2 diabetes mellitus patients.
View Article and Find Full Text PDFCombination therapy using chemically distinct drugs has appeared as one of the promising strategies to improve anticancer treatment efficiency. In the present investigation, poly-(lactic-co-glycolic) acid (PLGA) nanoparticles electrostatically conjugated with polyethylenimine (PEI)-based co-delivery system for epirubicin and paclitaxel (PLGA-PEI-EPI-PTX NPs) has been developed. The PLGA-PEI-EPI-PTX NPs exhibited a monodispersed size distribution with an average size of 240.
View Article and Find Full Text PDFResearch continues to find a breakthrough for the treatment of Alzheimer's Disease (AD) due to its complicated pathology. Presented herein is a novel series of arydiazoquinoline molecules investigated for their multifunctional properties against the factors contributing to Alzheimer's disease (AD). The inhibitory properties of fourteen closely related aryldiazoquinoline derivatives have been evaluated for their inhibitory effect on Aβ peptide aggregation.
View Article and Find Full Text PDFPharmaceutical effluents released from industries are accountable to deteriorate the aquatic and soil environment through indirect toxic effects. Microbes are adequately been used to biodegrade pharmaceutical industry wastewater and present study was envisaged to determine biodegradation of pharmaceutical effluent by Micrococcus yunnanensis. The strain showed 42.
View Article and Find Full Text PDFThe present study reports the development of potent silver nanoparticles (AgNPs) using bark extract of Acacia nilotica and evaluation of its wound healing, anti-biofilm, anti-cancer and anti-microbial activity. Stable, small sized nanoparticles with spherical morphology were obtained after significant optimization studies that was evaluated through UV-visible spectroscopy. Thereafter, physicochemical characterization of biosynthesized AgNPs was carried out through DLS and FESEM for evaluation of size.
View Article and Find Full Text PDFSeven bacterial strains isolated from a glyphosate-exposed orange plantation site were exposed to 1 mM N-(phosphonomethyl)glycine supplied as a phosphorus source. While some exhibited good biodegradation profiles, the strain 6 P, identified as Bacillus cereus, was the only strain capable of releasing inorganic phosphate to the culture supernatant, while accumulating polyphosphate intracellularly along the experimentation time. The composition and purity of the intracellular polyphosphate accumulated by the strain 6 P were confirmed by FTIR analysis.
View Article and Find Full Text PDFSilver nanoparticles have been widely studied to possess antimicrobial as well as anticancer activity, and have found its applications in various fields including pharmaceutical industry, diagnostics, drug delivery, food industry, and others. For this purpose, several cell proliferation assays are widely used for the evaluation of anticancer activity of synthetic compounds as well as natural plant extracts. In general, a compound is said to possess an anticancer activity if it prevents the cancer cells to grow and divide actively, and indirectly activates the generic program of cell death.
View Article and Find Full Text PDFThe present study focuses on the catalytic, antibacterial and antibiofilm efficacy of silver nanoparticles (AgNPs) in an easy, rapid and eco-friendly pathway. Herein, we have synthesised AgNPs using an aqueous extract of P. juliflora leaf.
View Article and Find Full Text PDFIn this study, the authors report a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) using (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG-AgNPs such as reaction time, temperature, concentration of AgNO, and TFG extract amount. Physicochemical characterisation of TFG-AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFA highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to BODIPY*; the detection limit was calculated to be 26.7 nm.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
May 2019
Cardiovascular diseases have been the major cause of mortality and morbidity all over the world accounting for more than 80% of the deaths from heart attacks and strokes. Hypercholesterolemia, an autosomal disorder of lipoprotein metabolism is one of the foremost causes of CVDs. An increased level of low-density lipoprotein cholesterol (LDL-C) in the plasma results in the rise of incidence rates in disease patients.
View Article and Find Full Text PDFThe work represents the potent catalytic activity of silver nanoparticles synthesized from Cicer arietinum (chickpea) leaf extract (CAL-AgNPs). Here, silver nano-catalysts were used against the anthropogenic pollutants mainly involving nitro-amines and azo dyes. These pollutants are extremely harmful to our environment and causes severe health issues.
View Article and Find Full Text PDF