Publications by authors named "Suren Deng"

Inorganic phosphate (Pi) is often limited in soils due to precipitation with iron (Fe) and aluminum (Al). To scavenge heterogeneously distributed phosphorus (P) resources, plants have evolved a local Pi signaling pathway that induces malate secretion to solubilize the occluded Fe-P or Al-P oxides. In this study, we show that Pi limitation impaired brassinosteroid signaling and downregulated BRASSINAZOLE-RESISTANT 1 (BZR1) expression in Arabidopsis thaliana.

View Article and Find Full Text PDF

Many proteins secreted from plant cells into the surrounding extracellular space help maintain cell structure and regulate stress responses in the external environment. In this study, under Pi-replete and depleted conditions, 652 high-confidence secreted proteins were quantified from wild-type (WT) and PHOSPHATE RESPONSE 2 (OsPHR2)-overexpressing suspension-cultured cells (SCCs). These proteins were functionally grouped as phosphatases, signal transduction proteins, pathogen-related (PR) proteins, cell wall-remodeling proteins, and reactive oxygen species (ROS) metabolism proteins.

View Article and Find Full Text PDF

Phosphorus (P) is a nonrenewable resource, which is one of the major challenges for sustainable agriculture. Although phosphite (Phi) can be absorbed by the plant cells through the Pi transporters, it cannot be metabolized by plant and unable to use as P fertilizers for crops. However, transgenic plants that overexpressed phosphite dehydrogenase (PtxD) from bacteria can utilize phosphite as the sole P source.

View Article and Find Full Text PDF

The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po).

View Article and Find Full Text PDF

The HAD superfamily is named after the halogenated acid dehalogenase found in bacteria, which hydrolyses a diverse range of organic phosphate substrates. Although certain studies have shown the involvement of HAD genes in Pi starvation responses, systematic classification and bioinformatics analysis of the HAD superfamily in plants is lacking. In this study, 41 and 40 HAD genes were identified by genomic searching in rice and Arabidopsis, respectively.

View Article and Find Full Text PDF

Rice is one of the most susceptible plants to iron (Fe) deficiency under neutral and alkaline conditions. Alkaline stress induces H O production and increases the deposition of Fe on the root surface, which causes leaf chlorosis and Fe deficiency in rice. Gene chip and qRT-PCR analysis indicated that the expression of the nitrate reductase (NR) genes were downregulated by alkaline treatment, which resulted in significantly decreased nitrate activity and nitric oxide (NO) production in the epidermis and stele, where H O accumulated.

View Article and Find Full Text PDF

Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene () that encodes a class II chitinase from , which grows naturally on alkaline-sodic soil.

View Article and Find Full Text PDF

Whilst constitutive overexpression of particular acid phosphatases (APases) can increase utilization of extracellular organic phosphate, negative effects are frequently observed in these transgenic plants under conditions of inorganic phosphate (Pi) sufficiency. In this study, we identified rice purple acid phosphatase 10c (OsPAP10c) as being a novel and major APase that exhibits activities associated both with the root surface and with secretion. Two constructs were used to generate the OsPAP10c-overexpression plants by driving its coding sequence with either a ubiquitin promoter (UP) or the OsPAP10c-native promoter (NP).

View Article and Find Full Text PDF