Analyzing Electrocardiogram (ECG) signals is imperative for diagnosing cardiovascular diseases. However, evaluating ECG analysis techniques faces challenges due to noise and artifacts in actual signals. Machine learning for automatic diagnosis encounters data acquisition hurdles due to medical data privacy constraints.
View Article and Find Full Text PDFThis paper presents a new spline-based modeling method of electrocardiogram (ECG) signal that can reproduce normal as well as abnormal ECG beats. Large volume ECG data is required for automatic machine learning diagnostic systems, medical education, research and testing purposes but due to privacy issues, access to this medical data is very difficult. Given this, modeling an ECG signal is a very challenging task in the field of biomedical signal processing.
View Article and Find Full Text PDF