Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is neuroprotective in animal models of neurodegenerative diseases. However, BDNF has a short half-life and its efficacy in the central nervous system (CNS), when delivered peripherally, is limited due to the blood-brain barrier (BBB). We have developed a means of delivering BDNF into the CNS using genetically engineered bone marrow stem cells (BMSCs) as a vehicle, and have explored the clinical effects of BDNF on outcomes in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
June 2007
We have identified the presence of leupaxin (LPXN), which belongs to the paxillin extended family of focal adhesion-associated adaptor proteins, in prostate cancer cells. Previous studies have demonstrated that LPXN is a component of the podosomal signaling complex found in osteoclasts, where LPXN was found to associate with the protein tyrosine kinases Pyk2 and c-Src and the cytosolic protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence (PTP-PEST). In the current study, LPXN was detectable as a 50-kDa protein in PC-3 cells, a bone-derived metastatic prostate cancer cell line.
View Article and Find Full Text PDFLeupaxin (LPXN), which belongs to the paxillin extended family of adaptor proteins, was previously identified as a component of the sealing zone in osteoclasts. LPXN was found to associate with several podosomal proteins, such as the protein tyrosine kinase Pyk2, the protein-tyrosine phosphatase-PEST (PTP-PEST), actin-binding proteins, and regulators of actin cytoskeletal reorganization. It was previously demonstrated that inhibition of LPXN expression resulted in reduced osteoclast-mediated resorption.
View Article and Find Full Text PDFZinc is an essential trace element that is involved in diverse metabolic and signaling pathways. Zinc deficiency is associated with retardation of bone growth. Previous in vitro studies have suggested a direct effect of zinc on both the proliferation and differentiation of osteoblast-like cells.
View Article and Find Full Text PDFHistidine kinases are important prokaryotic determinants of cellular adaptation to environmental conditions, particularly stress. The highly conserved histidine kinase, BarA, encoded by the bacterial adaptive response gene, barA, is a member of the family of tripartite histidine kinases, and is involved in stress adaptation. BarA has been implicated to play a role during infection of epithelial cells.
View Article and Find Full Text PDF