Publications by authors named "Surasak Chunsrivirot"

Brought about by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease (COVID-19) pandemic has resulted in large numbers of worldwide deaths and cases. Several SARS-CoV-2 variants have evolved, and Omicron (B.1.

View Article and Find Full Text PDF

Intelectins are putative innate immune lectins that are found throughout chordates. The first intelectin reported was cortical granule lectin-1 (XCGL-1 or XL-35). XCGL-1 is critical in fertilization membrane development in .

View Article and Find Full Text PDF

α-L-rhamnosidase catalyzes hydrolysis of the terminal α-L-rhamnose from various natural rhamnoglycosides, including naringin and hesperidin, and has various applications such as debittering of citrus juices in the food industry and flavonoid derhamnosylation in the pharmaceutical industry. However, its activity is lost at high temperatures, limiting its usage. To improve Lactobacillus acidophilus α-L-rhamnosidase stability, we employed molecular dynamics (MD) to identify a highly flexible region, as evaluated by its root mean square fluctuation (RMSF) value, and computational protein design (Rosetta) to increase rigidity and favorable interactions of residues in highly flexible regions.

View Article and Find Full Text PDF

Intelectins are immune lectins expressed in chordates, including several fish species, in which intelectins are known to be upregulated upon infection. However, the basic biochemical properties and bacteria binding specificities of several fish intelectins are not well studied. We focus our investigation on zebrafish intelectin-2 (DrIntL-2) that is predominantly expressed in the gastrointestinal tract.

View Article and Find Full Text PDF

The β-mannanase from Bacillus subtilis HM7 (Man26HM7) isolated from Dynastes hercules larvae excrement was cloned and expressed in Escherichia coli. Biochemical characterization shows that optimal pH and temperature for catalysis are 6.0 and 50 °C, respectively.

View Article and Find Full Text PDF

SARS-CoV-2 is responsible for COVID-19 pandemic, causing large numbers of cases and deaths. It initiates entry into human cells by binding to the peptidase domain of angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain of S1 subunit of spike protein (SARS-CoV-2-RBD). Employing neutralizing antibodies to prevent binding between SARS-CoV-2-RBD and ACE2 is an effective COVID-19 therapeutic solution.

View Article and Find Full Text PDF
Article Synopsis
  • Pfs25 is a key candidate for malaria transmission-blocking vaccines, but its genetic diversity has not been thoroughly studied in various endemic populations.
  • A comprehensive analysis of 307 Pfs25 sequences revealed 11 unique haplotypes, with two dominant ones (H1 and H2) making up the majority and showing region-specific prevalence.
  • The study identified specific single-nucleotide polymorphisms (SNPs) contributing to this diversity, with implications for the effectiveness of vaccines across different geographical regions.
View Article and Find Full Text PDF

SARS-CoV-2 is coronavirus causing COVID-19 pandemic. To enter human cells, receptor binding domain of S1 subunit of SARS-CoV-2 (SARS-CoV-2-RBD) binds to peptidase domain (PD) of angiotensin-converting enzyme 2 (ACE2) receptor. Employing peptides to inhibit binding between SARS-CoV-2-RBD and ACE2-PD is a therapeutic solution for COVID-19.

View Article and Find Full Text PDF

Levan-type fructooligosaccharides (LFOs) and levan can potentially be used as ingredients in prebiotics, skincare products, and antitumor agents. The Y246S mutant of RN-01 levansucrase (oligosaccharide-producing levansucrase, OPL) was reported to productively synthesize LFOs; however, OPL's thermostability is low at high temperatures. To enhance OPL structural stability, this study employed molecular dynamics (AMBER) to identify a highly flexible region, as measured by its average root-mean-square fluctuation (RMSF) value, on the OPL surface and computational protein design (Rosetta) to rigidify and increase favorable interactions to increase its structural stability.

View Article and Find Full Text PDF

SARS-CoV-2 is the novel coronavirus causing the COVID-19 pandemic. To enter human cells, the receptor-binding domain (RBD) of the S1 subunit of SARS-CoV-2 (SARS-CoV-2-RBD) initially binds to the peptidase domain of angiotensin-converting enzyme 2 receptor (ACE2-PD). Using peptides to inhibit SARS-CoV-2-RBD binding to ACE2 is a potential therapeutic solution for COVID-19.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a crucial component in the outer membrane of Gram-negative bacteria that contributes to both pathogenicity as well as immunity against pathogenic bacteria. Typical LPS contains GlcN disaccharide as the core of lipid A. However, some bacteria such as and contain GlcN3N in lipid A instead.

View Article and Find Full Text PDF

Inulosucrase is an enzyme that synthesizes inulin-type β-2,1-linked fructooligosaccharides (IFOS) from sucrose. Previous studies have shown that calcium is important for the activity and stability of 121 inulosucrase (LrInu). Here, mutational analyses of four conserved calcium-binding site I (Ca-I) residues of LrInu, Asp, Gln, Asn, and Asp were performed.

View Article and Find Full Text PDF

Levansucrase catalyzes production of levan and levan-type fructooligosaccharides (LFOs) with potential applications in food and pharmaceutical industries such as prebiotics and anti-tumor agents. Previous study found that Y246S mutant of Bacillus licheniformis RN-01 levansucrase (oligosaccharide producing levansucrase, OPL) could effectively produce LFOs but its thermostability is limited at high temperature. In this study, molecular dynamics (MD) and computational protein design were used to create mutants with higher thermostability than OPL by rigidifying highly flexible residues on enzyme surface.

View Article and Find Full Text PDF

European honeybee, Apis mellifera, produces α-glucosidase (HBGase) that catalyzes the cleavage of an α-glycosidic bond of the non-reducing end of polysaccharides and has potential applications for malt hydrolysis in brewing industry. Characterized by their substrate specificities, HBGases have three isoforms including HBGase II, which prefers maltose to sucrose as a substrate. Previous study found that the catalytic efficiency of maltose hydrolysis of N226P mutant of HBGase II was higher than that of the wild type (WT), and the catalytic efficiency of maltose hydrolysis of WT was higher than those of H227Y and N226P-H227Y mutants.

View Article and Find Full Text PDF

Levansucrase (LS) from Gram-positive bacteria generally produces a large quantity of levan polymer, a polyfructose with glucose at the end (GF) but a small quantity of levan-type fructooligosaccharides (LFOs). The properties of levan and LFOs depend on their chain lengths, thereby determining their potential applications in food and pharmaceutical industries such as prebiotics and anti-tumor agents. Therefore, an ability to redesign and engineer the active site of levansucrase for synthesis of products with desired degree of polymerization (DP) is very beneficial.

View Article and Find Full Text PDF

Fructooligosaccharides (FOSs) are well-known prebiotics that are widely used in the food, beverage and pharmaceutical industries. Inulosucrase (E.C.

View Article and Find Full Text PDF

Produced by levansucrase, levan and levan oligosaccharides (GFn) have potential applications in food and pharmaceutical industries such as prebiotics, anti-tumor and anti-inflammatory agents. Previous study reported that Bacillus licheniformis RN-01 levansucrase could produce levan oligosaccharides and long-chain levan. However, its N251A and N251Y mutants could effectively produce short-chain oligosaccharides upto GF3, but they could not produce long-chain levan.

View Article and Find Full Text PDF

Levan has various potential applications in the pharmaceutical and food industries, such as cholesterol-lowering agents and prebiotics, due to its beneficial properties, which depend on its length and branching degree. A previous study also found that the branching degree of levan affected anti-tumor activities against SNU-1 and HepG2 tumor cell lines. Despite its promising potential, the properties of levans with different branching degrees are not well understood at the molecular level.

View Article and Find Full Text PDF

Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases) and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT) preferred sucrose to maltose as a substrate, while the Y227H mutant (MT) preferred maltose to sucrose.

View Article and Find Full Text PDF

Advanced oral squamous cell carcinoma (OSCC) is typically aggressive and closely correlated with disease recurrence and poor survival. Multidrug resistance (MDR) is the most critical problem leading to therapeutic failure. Investigation of novel anticancer candidates targeting multidrug-resistant OSCC cells may provide a basis for developing effective strategies for OSCC treatment.

View Article and Find Full Text PDF

Background: Levan and levan-type fructo-oligosaccharides (LFOs) have various potential applications in pharmaceutical and food industries due to their beneficial properties such as their low intrinsic viscosity and high water solubility. Previous studies showed that they exhibited prebiotic effects, anti-inflammatory and anti-tumor activities against Sarcoma-180 tumor cells of human. Despite their various potential applications, the structural and molecular properties of LFOs of various chain lengths are not well understood.

View Article and Find Full Text PDF

Human papillomavirus 16 (HPV 16) is a DNA virus that is capable of infecting humans and causing cervical cancer. HPV16 E2 plays an important role in viral gene regulation. This work aims to predict the binding conformations and interactions between the dodecapeptides and HPV16 E2 as well as to design novel peptide inhibitors that are capable of binding to HPV16 E2 and disrupt the transcriptional regulator E1-E2 complex formation, using computational protein design techniques.

View Article and Find Full Text PDF