The three-dimensional structure (3D structure) of Xyn11A, a family 11 xylanase from Bacillus firmus K-1, was obtained through homology modeling. To study the substrate-binding site of Xyn11A, six xylooligosaccharides, xylobiose to xyloheptaose (X2-X7), were docked into the active site of Xyn11A by molecular docking. Based on the docked energy and estimated free energy of binding combined with modeled enzyme-substrate complexes, the substrate-binding site of Xyn11A probably contained six subsites, defined as -3, -2, -1, +1, +2, and +3.
View Article and Find Full Text PDFBackground: SARS coronavirus main proteinase (SARS CoVMpro) is an important enzyme for the replication of Severe Acute Respiratory Syndrome virus. The active site region of SARS CoVMpro is divided into 8 subsites. Understanding the binding mode of SARS CoVMpro with a specific substrate is useful and contributes to structural-based drug design.
View Article and Find Full Text PDFJ Chem Inf Model
June 2006
As it is known that the understanding of the basic properties of the enzyme/inhibitor complex leads directly to enhancing the capability in drug designing and drug discovery. Molecular dynamics simulations have been performed to examine detailed information on the structure and dynamical properties of the HIV-1 PR complexed with saquinavir in the three protonated states, monoprotonates at Asp25 (Mono-25) and Asp25'(Mono-25') and diprotonate (Di-Pro) at both Asp25 and Asp25'. The obtained results support clinical data which reveal that Ile84 and Gly48 are two of the most frequent residues where mutation toward a protease inhibitor takes place.
View Article and Find Full Text PDFTo investigate the hypothesis that decreased hapten flexibility may lead to increased catalytic antibody activity, we used two closely related immunogens differing only in the flexibility of the atomic framework around the structural motif of the haptens, analogous to the reaction centre of the corresponding substrates. Identical leaving-group determinants in the haptens and identical leaving groups in the substrates removed the ambiguity inherent in some data reported in the literature. Anti-phosphate and anti-phosphonate kinetically homogeneous polyclonal catalytic antibody preparations were compared by using carbonate and ester substrates respectively, each containing a 4-nitrophenolate leaving group.
View Article and Find Full Text PDFThe acylation and deacylation stages of the hydrolysis of N -acetyl-Phe-Gly methyl thionoester catalysed by papain and actinidin were investigated by stopped-flow spectral analysis. Differences in the forms of pH-dependence of the steady-state and pre-steady-state kinetic parameters support the hypothesis that, whereas for papain, in accord with the traditional view, the rate-determining step is the base-catalysed reaction of the acyl-enzyme intermediate with water, for actinidin it is a post-acylation conformational change required to permit release of the alcohol product and its replacement in the catalytic site by the key water molecule. Possible assignments of the kinetically influential p K (a) values, guided by the results of modelling, including electrostatic-potential calculations, and of the mechanistic roles of the ionizing groups, are discussed.
View Article and Find Full Text PDF