The polarizable continuum model (PCM) is a computationally efficient way to incorporate dielectric boundary conditions into electronic structure calculations, via a boundary-element reformulation of Poisson's equation. This transformation is only rigorously valid for an isotropic dielectric medium. To simulate anisotropic solvation, as encountered at an interface or when parts of a system are solvent-exposed while other parts are in a nonpolar environment, modifications to the PCM formalism have been suggested, in which a dielectric constant is assigned separately to each atomic sphere that contributes to the solute cavity.
View Article and Find Full Text PDFSoft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion-water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl, Br, I, CN, OCN, SCN, NO2-, NO3-, and ClOn- (n=1,2,3,4), several of which are archetypal examples of surface-active species.
View Article and Find Full Text PDFThis article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods.
View Article and Find Full Text PDFLiquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, but the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. We have computed aqueous-phase VIEs for a set of inorganic anions, using a combination of molecular dynamics simulations and electronic structure calculations, with results that are in excellent agreement with experiment regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk aqueous solution. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in both environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy.
View Article and Find Full Text PDFState-to-state dynamics of the benchmark hydrogen exchange reaction H + H ( = 0-4, = 0-3) → H (', ') + H is investigated with the aid of the real wave packet approach of Gray and Balint-Kurti ( 1998, , 950-962) and electronic ground BKMP2 potential energy surface of Boothroyd ( 1996, , 7139-7152). Initial state-selected and product state-resolved reaction probabilities, integral cross section, and product diatom vibrational and rotational level populations at a few collision energies are reported to elucidate the energy disposal mechanism. State-specific thermal rate constants are also calculated and compared with the available literature results.
View Article and Find Full Text PDFThe optical properties of chromophores embedded in a water-solvated dimer of octa-acid that forms a molecular-shaped capsule are investigated. In particular, we address the anisotropic dielectric environment that appears to blue-shift excitation energies compared to the free aqueous chromophores. Recently we reported that using an effective scalar dielectric constant ε ≈ 3 appears to reproduce the measured spectra of the embedded coumarins, suggesting that the capsule provides a significant, albeit not perfect, screening of the aqueous dielectric environment.
View Article and Find Full Text PDF