Rheo-dielectric studies of soft materials provide important information on the dynamic structure and electric polarization. We study the dielectric dispersion of a nematic liquid crystal by applying a high AC probe field without a DC bias and a low AC probe field with a high DC bias under steady rotational shear. The dielectric anisotropy of the nematic is positive and the applied electric field is parallel to the velocity gradient with a magnitude larger than the Freedericksz threshold field.
View Article and Find Full Text PDFTwist-bend (N_{tb}) and ferroelectric (N_{F}) nematic liquid crystals exhibit several novel effects and new physical properties. Here, we report experimental studies on the phase diagram and some physical properties of binary mixtures of CB9CB and RM734 mesogens. Both N-N_{tb} and N-N_{F} phase transition temperatures and the corresponding enthalpies decrease significantly and, eventually, these transitions disappear at some intermediate compositions, stabilizing wide nematic phase (N).
View Article and Find Full Text PDFSynthesis of micro- and nanoparticles of pre-designed shape and surface properties is an integral part of soft and synthetic active matter. We report synthesis of matchstick-shaped (MS) magnetodielectric particles and demonstrate their potential as active agents with field-controllable trajectories in a nematic liquid crystal (NLC). The MS particles with homeotropic anchoring in NLCs align either parallel or perpendicular to the director depending on the dipolar or quadrupolar director distortions.
View Article and Find Full Text PDFThe tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) is a complex ecosystem that drives tumor progression; however, in-depth single cell characterization of the PDAC TME and its role in response to therapy is lacking. Here, we perform single-cell RNA sequencing on freshly collected human PDAC samples either before or after chemotherapy. Overall, we find a heterogeneous mixture of basal and classical cancer cell subtypes, along with distinct cancer-associated fibroblast and macrophage subpopulations.
View Article and Find Full Text PDF"de Vries" liquid crystals, defined by a maximum layer shrinkage of ≤1% from the smectic A to C phase transition, are an integral component of ferroelectric liquid crystal (FLC) displays. Bona fide de Vries materials described in the literature are primarily perfluorinated, polysiloxane and polysilane-terminated rod-like (or calamitic) LCs. Herein, for the first time, we report a series of newly designed achiral unsymmetrical bent-core molecules with terminal alkoxy chains exhibiting similar properties to "de Vries" LCs.
View Article and Find Full Text PDFWe study the electrophoresis of metal-dielectric Janus particles with dipolar director symmetry in two nematic liquid crystals (LCs) having the same sign of conductivity anisotropy (Δ) but opposite signs of dielectric anisotropy (Δ). The applied ac electric field is parallel and perpendicular to the director for positive and negative dielectric anisotropy LCs, respectively. We show that the Janus dipolar particles propel faster than the non-Janus dipolar particles in both LCs.
View Article and Find Full Text PDFTwo-dimensional liquid crystal (LC) models of interacting V-shaped bent-core molecules with two rigid rodlike identical segments connected at a fixed angle (θ=112^{∘}) are investigated. The model assigns equal biquadratic tensor coupling among constituents of the interacting neighboring molecules on a square lattice, allowing for reorientations in three dimensions (d=2, n=3). We find evidence of two temperature-driven topological transitions mediated by point disclinations associated with the three ordering directors, condensing the LC medium successively into uniaxial and biaxial phases.
View Article and Find Full Text PDFWe study the pair interaction of charged silica microrods in chiral nematic liquid crystals and show that the microrods with homeotropic surface anchoring form a bound state due to the competing effect of electrostatic (Coulomb) and elastic interactions. The robustness of the bound state is demonstrated by applying external electrical and mechanical forces that perturbs their equilibrium position as well as orientation. In the bound state we have measured the correlated thermal fluctuations of the position, using two-particle cross-correlation spectroscopy that uncovers their hydrodynamic interaction.
View Article and Find Full Text PDFMany bent-core nematic liquid crystals exhibit unusual physical properties due to the presence of smectic clusters, known as "cybotactic" clusters, in the nematic phase. Here, we investigate the effect of these clusters on the complex shear modulus (G*(ω)) of two asymmetric bent-core liquid crystals using a microrheological technique. The compound with a shorter hydrocarbon chain (8OCH3) exhibits only a nematic (N) phase whereas the compound with a longer chain (16OCH3) exhibits both nematic (N) and smectic-A (SmA) phases.
View Article and Find Full Text PDFRecently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a -CH moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which -Cl was substituted for -CH at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.
View Article and Find Full Text PDFIn recent years, investigation on the non-display applications of liquid crystals has increased considerably. One of the emerging applications is whispering gallery mode (WGM) lasing. Here, we report experimental studies on the morphology and WGM lasing in nematic (N), smectic-A (SmA) and smectic-C (SmC) microdroplets dispersed in a highly transparent and low refractive index perfluopolymer.
View Article and Find Full Text PDFRobust control over the position, orientation and self-assembly of nonspherical colloids facilitate the creation of new materials with complex architecture that are important from technological and fundamental perspectives. We study orientation, elastic interaction and co-assembly of surface functionalized silica nano-rods in thin films of nematic liquid crystal. With homeotropic boundary condition, the nano-rods are predominantly oriented perpendicular to the nematic director which is different than the mostly parallel orientation of the micro-rods.
View Article and Find Full Text PDFColloidal particles in nematic liquid crystals create elastic distortion and experience long-range forces. The symmetry of elastic distortion and consequently the complexity of interaction strongly depends largely on the liquid crystal anchoring, topology and shape of the particles. Here, we introduce a new nematic colloidal system made of peanut-shaped hematite particles.
View Article and Find Full Text PDFThe competing effect of surface anchoring of dispersed microparticles and elasticity of nematic and cholesteric liquid crystals has been shown to stabilize a variety of topological defects. Here we study a pair of colloidal microparticles with homeotropic and planar surface anchoring across N-SmA-SmC phase transitions. We show that below the SmA-SmC phase transition the temperature dependence of interparticle separation (D) of colloids with homeotropic anchoring shows a power-law behavior; D∼(1-T/T_{AC})^{α}, with an exponent α≈0.
View Article and Find Full Text PDFWe experimentally study the effect of temperature and electric field on the quality (Q) factor and free spectral range (FSR) of whispering-gallery-mode optical resonance of dye-doped nematic liquid crystal microdroplets. Both the Q factor and the FSR are highly sensitive to the temperature and electric field and are tunable. The Q factor decreases, whereas the FSR increases substantially, with increasing temperature and electric field.
View Article and Find Full Text PDFThe design and synthesis of three room-temperature discotic nematic (N ) liquid crystals (LCs) is presented. The LC consists of an azobenzene core attached to which are four pentaalkynylbenzene (PA) units through flexible alkyl spacers. The presence of a short azo linking group provides more disorder in the system, thereby reducing the packing efficiency among the PA units and resulting into the formation of a room-temperature N phase over a wide temperature range.
View Article and Find Full Text PDFDynamics of microparticles in isotropic liquids by transducing the energy of an applied electric field have been studied for decades. Recently, such studies in anisotropic media like liquid crystals have opened up new perspectives in colloid science. Here, we report studies on ac-electric-field-driven dynamics of microsheets in nematic liquid crystals.
View Article and Find Full Text PDFA new approach is reported for the design of a room-temperature discotic nematic (N) liquid crystal (LC) dimer consisting of a triphenylene and a pentaalkynylbenzene unit linked via flexible alkyl spacers. The formation of the N phase is realized most likely through folding of the dimeric molecule that prevent stacking between the triphenylene units, as suggested by modelling in the mesophase derived from X-ray scattering results and high-level DFT calculations.
View Article and Find Full Text PDFWe report magnetic field tuning of the structure and Whispering Gallery Mode lasing from ferromagnetic nematic liquid crystal micro-droplets. Microlasers were prepared by dispersing a nematic liquid crystal, containing magnetic nanoparticles and fluorescent dye, in a glycerol-lecithin matrix. The droplets exhibit radial director structure, which shows elastic distortion at a very low external magnetic field.
View Article and Find Full Text PDFExtensive transcriptional and ontogenetic diversity exists among normal tissue-resident macrophages, with unique transcriptional profiles endowing the cells with tissue-specific functions. However, it is unknown whether the origins of different macrophage populations affect their roles in malignancy. Given potential artifacts associated with irradiation-based lineage tracing, it remains unclear if bone-marrow-derived macrophages (BMDMs) are present in tumors of the brain, a tissue with no homeostatic involvement of BMDMs.
View Article and Find Full Text PDFWe study the dynamics of electric field driven multiaxis electro-orientation of birefringent microsheets in both the isotropic and nematic phases of a liquid crystal. For a fixed direction of applied field in the isotropic phase, there are two critical fields above which the microsheets show two orientations. In the nematic phase, it shows three rotations in both planar and homeotropic cells.
View Article and Find Full Text PDFWe report experimental studies on 2D colloidal crystals of dimers stabilized by vortex-like defects in planar nematic and π/2 twisted nematic cells. The dimers are prepared and self-assembled using a laser tweezer. We study the effect of temperature and electric field on the lattice parameters of the colloidal crystals.
View Article and Find Full Text PDF