Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder.
View Article and Find Full Text PDFThe addition of 0.1 wt % carbon nanoparticles significantly improved the optical absorption and flowability of gas-atomized copper powder. This facilitated selective laser melting (SLM) by reducing the required laser energy density to obtain 98% dense parts.
View Article and Find Full Text PDF