Publications by authors named "Surafel Mulugeta"

Inability to access and afford discharge oral antimicrobials may delay discharges or result in therapeutic failure. "Test-claims" have the potential to identify such barriers. This study evaluated discharge antimicrobial access and patient outcomes after implementation of a standardized, inpatient pharmacist-initiated antimicrobial discharge medication cost inquiry (aDMCI) process.

View Article and Find Full Text PDF

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury.

View Article and Find Full Text PDF
Article Synopsis
  • AEC2 dysfunction plays a crucial role in both adult and pediatric interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), but studying early disease mechanisms has been challenging due to limited access to primary AEC2s.
  • Researchers developed an in vitro model using patient-specific induced pluripotent stem cells (iPSCs) with a disease-associated variant to explore AEC2 dysfunction.
  • Findings show that mutant AEC2s accumulate improperly processed proteins, leading to reduced progenitor capacity and metabolic issues, and treatment with hydroxychloroquine worsens these dysfunctions, demonstrating the model's potential for studying disease mechanisms in ILD.
View Article and Find Full Text PDF

Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na channel (ENaC), TGFβ signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of in the lung epithelial cells of neonatal doxycycline-induced triple transgenic mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking.

View Article and Find Full Text PDF

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear.

View Article and Find Full Text PDF

Purpose: Patients with a reported β-lactam allergy (BLA) are often given alternative perioperative antibiotic prophylaxis, increasing risk of surgical site infections (SSIs), acute kidney injury (AKI), and Clostridioides difficile infection (CDI). The purpose of this study was to implement and evaluate a pharmacist-led BLA clarification interview service in the preoperative setting.

Methods: A pharmacist performed BLA clarification telephone interviews before elective procedures from November 2018 to March 2019.

View Article and Find Full Text PDF

Acute inflammatory exacerbations (AIE) represent precipitous deteriorations of a number of chronic lung conditions, including pulmonary fibrosis (PF), chronic obstructive pulmonary disease and asthma. AIEs are marked by diffuse and persistent polycellular alveolitis that profoundly accelerate lung function decline and mortality. In particular, excess monocyte mobilization during AIE and their persistence in the lung have been linked to poor disease outcome.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFβ signaling, which promotes fibrotic remodeling.

View Article and Find Full Text PDF

Patients with idiopathic pulmonary fibrosis (IPF) often experience precipitous deteriorations, termed "acute exacerbations" (AE), marked by diffuse alveolitis and altered gas exchange, resulting in a significant loss of lung function or mortality. The missense isoleucine to threonine substitution at position 73 (I73T) in the alveolar type 2 cell-restricted surfactant protein-C (SP-C) gene () has been linked to clinical IPF. To better understand the sequence of events that impact AE-IPF, we leveraged a murine model of inducible SP-C ( ) expression.

View Article and Find Full Text PDF

Alveolar type 2 (AT2) cell endoplasmic reticulum (ER) stress is a prominent feature in adult and pediatric interstitial lung disease (ILD and ChILD), but in vivo models linking AT2 cell ER stress to ILD have been elusive. Based on a clinical ChILD case, we identified a critical cysteine residue in the surfactant protein C gene (SFTPC) BRICHOS domain whose mutation induced ER stress in vitro. To model this in vivo, we generated a knockin mouse model expressing a cysteine-to-glycine substitution at codon 121 (C121G) in the Sftpc gene.

View Article and Find Full Text PDF

Epithelial cell dysfunction is postulated as an important component in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mutations in the surfactant protein C (SP-C) gene (SFTPC), an alveolar type II (AT2) cell-restricted protein, have been found in sporadic and familial IPF. To causally link these events, we developed a knockin mouse model capable of regulated expression of an IPF-associated isoleucine-to-threonine substitution at codon 73 (I73T) in Sftpc (SP-CI73T).

View Article and Find Full Text PDF

The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3)) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3 gene expression in vivo are unknown.

View Article and Find Full Text PDF

The lipid transporter, ATP-binding cassette class A3 (ABCA3), is a highly conserved multi-membrane-spanning protein that plays a critical role in the regulation of pulmonary surfactant homeostasis. Mutations in ABCA3 have been increasingly recognized as one of the causes of inherited pulmonary diseases. These monogenic disorders produce familial lung abnormalities with pathological presentations ranging from neonatal surfactant-deficiency-induced respiratory failure to childhood or adult diffuse parenchymal lung diseases for which specific treatment modalities remain limited.

View Article and Find Full Text PDF

Increasing interest in the potent anti-tuberculosis activity and the novel target (QcrB) of imidazo[1,2-a]pyridine-3-carboxamides encouraged extended structure-activity relationship studies of additional scaffolds. This study reports on the in vitro profiling of the imidazo[2,1-b]thiazole-5-carboxamides as a new promising class of anti-tuberculosis compounds endowed with nanomolar potency against replicating and drug-resistant Mycobacterium tuberculosis (Mtb) as well as low toxicity to VERO cells. Compounds 6, 16, and 17 had MIC values <10 nM and toxicity >100 μM.

View Article and Find Full Text PDF

While natural products constitute an established source of lead compounds, the classical iterative bioassay-guided isolation process is both time- and labor-intensive and prone to failing to identify active minor constituents. (HP)TLC-bioautography-MS/NMR, which combines cutting-edge microbiological, chromatographic, and spectrometric technologies, was developed to accelerate anti-tuberculosis (TB) drug discovery from natural sources by acquiring structural information at a very early stage of the isolation process. Using the avirulent, bioluminescent strain mc7000 luxABCDE, three variations of bioautography were evaluated and optimized for sensitivity in detecting anti-TB agents, including established clinical agents and new leads with novel mechanisms of action.

View Article and Find Full Text PDF

Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. Rare mutations in surfactant system components have provided new clues to understanding broader questions regarding the role of AT2 cell dysfunction in the pathophysiology of fibrotic lung diseases.

View Article and Find Full Text PDF

Zolpidem (Ambien, ) is an imidazo[1,2-]pyridine-3-acetamide and an approved drug for the treatment of insomnia. As medicinal chemists enamored by how structure imparts biological function, we found it to have strikingly similar structure to the antitubercular imidazo[1,2-]pyridine-3-carboxyamides. Zolpidem was found to have antituberculosis activity (MIC of 10-50 μM) when screened against replicating () HRv.

View Article and Find Full Text PDF

Clostridium difficile remains a major public health threat and continues to contribute to excess morbidity, mortality and healthcare costs. Antimicrobial stewardship programs have demonstrated success in combating C. difficile, primarily through antibiotic restrictive strategies.

View Article and Find Full Text PDF

Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells.

View Article and Find Full Text PDF

Mutation of threonine for isoleucine at codon 73 (I73T) in the human surfactant protein C (hSP-C) gene (SFTPC) accounts for a significant portion of SFTPC mutations associated with interstitial lung disease (ILD). Cell lines stably expressing tagged primary translation product of SP-C isoforms were generated to test the hypothesis that deposition of hSP-C(I73T) within the endosomal system promotes disruption of a key cellular quality control pathway, macroautophagy. By fluorescence microscopy, wild-type hSP-C (hSP-C(WT)) colocalized with exogenously expressed human ATP binding cassette class A3 (hABCA3), an indicator of normal trafficking to lysosomal-related organelles.

View Article and Find Full Text PDF

The lipid transport protein, ABCA3, expressed in alveolar type 2 (AT2) cells, is critical for surfactant homeostasis. The first luminal loop of ABCA3 contains three putative N-linked glycosylation sites at residues 53, 124, and 140. A common cotranslational modification, N-linked glycosylation, is critical for the proper expression of glycoproteins by enhancing folding, trafficking, and stability through augmentation of the endoplasmic reticulum (ER) folding cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Fecal bacteria in freshwater can cause illnesses, making their detection important for public health.
  • Traditional methods like microbial plating for measuring fecal indicator bacteria (FIB), such as E. coli, are time-consuming, taking over 24 hours.
  • This study used quantitative PCR (qPCR) on water samples from Lake Erie to assess Bacteroides and compare its effectiveness to E. coli counts, finding that Bacteroides could help predict E. coli levels under certain conditions, aiding water quality monitoring.
View Article and Find Full Text PDF

Shiga toxin-producing E. coli carrying the stx(1) and/or stx(2) genes can cause multi-symptomatic illness in humans. A variety of terrestrial and aquatic environmental reservoirs of stx have been described.

View Article and Find Full Text PDF