Publications by authors named "Surabhi Sood"

Different trends of echo time dependent gradient recalled echo MRI signals in different brain regions have been attributed to signal compartments in image voxels. It remains unclear how variations in gradient recalled echo MRI signals change as a function of MRI field strength, and how data processing may impact signal compartment parameters. We used two popular quantitative susceptibility mapping methods of processing raw phase images (Laplacian and path-based unwrapping with V-SHARP) and expressed values in the form of induced frequency shifts (in Hz) in six specific brain regions at 3T and 7T.

View Article and Find Full Text PDF

Gradient recalled echo magnetic resonance imaging (GRE-MRI) at ultra-high field holds great promise for new contrast mechanisms and delineation of putative tissue compartments that contribute to the multi-echo GRE-MRI signal may aid structural characterization. Several studies have adopted the three water-pool compartment model to study white matter brain regions, associating individual compartments with myelin, axonal and extracellular water. However, the number and identifiability of GRE-MRI signal compartments has not been fully explored.

View Article and Find Full Text PDF

Purpose: Magnetic susceptibility is a physical property of matter that varies depending on chemical composition and abundance of different molecular species. Interest is growing in mapping of magnetic susceptibility in the human brain using magnetic resonance imaging techniques, but the influences affecting the mapped values are not fully understood.

Methods: We performed quantitative susceptibility mapping on 7 Tesla (T) multiple echo time gradient recalled echo data and evaluated the trend in 10 regions of the human brain.

View Article and Find Full Text PDF