Publications by authors named "Surabhi Sonam"

For a damaged tissue to regenerate, the injured site must repair the wound, proliferate, and restore the correct patterning and cell types. We found that Zelda, a pioneer transcription factor largely known for its role in embryonic zygotic genome activation, is dispensable for normal wing development but crucial for wing disc patterning during regeneration. Impairing Zelda function during disc regeneration resulted in adult wings with a plethora of cell fate errors, affecting the veins, margins, and posterior compartment identity.

View Article and Find Full Text PDF

Epithelia act as a barrier against environmental stress and abrasion and they are continuously exposed to environments of various mechanical properties. The impact of this environment on epithelial integrity remains elusive. By culturing epithelial cells on 2D hydrogels, we observe a loss of epithelial monolayer integrity through spontaneous hole formation when grown on soft substrates.

View Article and Find Full Text PDF

Quantification of skeletal muscle functional contraction is essential to assess the outcomes of therapeutic procedures for neuromuscular disorders. Muscle three-dimensional "Organ-on-chip" models usually require a substantial amount of biological material, which rarely can be obtained from patient biopsies. Here, we developed a miniaturized 3D myotube culture chip with contraction monitoring capacity at the single cell level.

View Article and Find Full Text PDF

Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for homeostasis and maintaining corneal transparency. Owing to our limited knowledge of cell fates and gene activity within the cornea, the search for unique markers to identify and isolate these cells remains crucial for ocular surface reconstruction. We performed single-cell RNA sequencing of corneal cells from larval and adult stages of Xenopus.

View Article and Find Full Text PDF

Background Information: Actin cytoskeleton contractility plays a critical role in morphogenetic processes by generating forces that are then transmitted to cell-cell and cell-ECM adhesion complexes. In turn, mechanical properties of the environment are sensed and transmitted to the cytoskeleton at cell adhesion sites, influencing cellular processes such as cell migration, differentiation and survival. Anchoring of the actomyosin cytoskeleton to adhesion sites is mediated by adaptor proteins such as talin or α-catenin that link F-actin to transmembrane cell adhesion receptors, thereby allowing mechanical coupling between the intracellular and extracellular compartments.

View Article and Find Full Text PDF

Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system.

View Article and Find Full Text PDF

Limbal Stem Cell Deficiency (LSCD) is a painful and debilitating disease that results from damage or loss of the Corneal Epithelial Stem Cells (CESCs). Therapies have been developed to treat LSCD by utilizing epithelial stem cell transplants. However, effective repair and recovery depends on many factors, such as the source and concentration of donor stem cells, and the proper conditions to support these transplanted cells.

View Article and Find Full Text PDF

Background: Numerous sensory nerves in the cornea contribute to normal tissue homeostasis. Interestingly, cells within the basal corneal epithelium can regenerate new lenses in the frog, Xenopus. In this study, we investigated whether cornea sensory nerves or their neuropeptides are important for supporting cornea-lens regeneration.

View Article and Find Full Text PDF

Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established.

View Article and Find Full Text PDF

The mechanism underlying the role of Hsp70s in toxicity associated with intracellular accumulation of toxic protein inclusions is under intense investigation. In current study, we examined the roles of all different isoforms of yeast cytosolic Ssa Hsp70 on α-synuclein mediated cellular toxicity. The study showed that yeast cells expressing stress-inducible Ssa3 or Ssa4 as sole Ssa Hsp70 isoforms, reduced α-synuclein toxicity better than those expressing a constitutive counterpart.

View Article and Find Full Text PDF

Epithelial cells demonstrate different collective migratory modes when encountering two (2D) and three dimensional (3D) microenvironment. While planar micropatterns and constraint have been shown to strongly impact collective cell migration (CCM), how out-of-plane curvature and 3D confinement will affect epithelial organization and dynamics remains largely unknown. This is likely due to lack of proper 3D microscaffolds for studying CCM.

View Article and Find Full Text PDF

Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter.

View Article and Find Full Text PDF

Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive.

View Article and Find Full Text PDF

Extracellular matrix (ECM) of the human Mesenchymal Stem Cells (MSCs) influences intracellular tension and is known to regulate stem cell fate. However, little is known about the physiological conditions in the bone marrow, where external forces such as fluid shear stress, apart from the physical characteristics of the ECM, influence stem cell response. Here, we hypothesize that substrate topography and fluid shear stress alter the cellular contractile forces, influence the genetic expression of the stem cells and hence alter their lineage.

View Article and Find Full Text PDF

Ectopic autografting of testis tissue is a promising approach for studying testicular development, male germline preservation and restoration of male fertility. In this study, we examined the fate of various testicular cells in adult mouse testes following ectopic autografting at 1, 2, 4 and 8 weeks post grafting. Histological examination showed no evidence of re-establishment of spermatogenesis in autografts, and progressive degeneration of seminiferous tubules was detected.

View Article and Find Full Text PDF

We have developed SMMRNA, an interactive database, available at http://www.smmrna.org, with special focus on small molecule ligands targeting RNA.

View Article and Find Full Text PDF