The Russian Far East is a region of unique biodiversity, with numerous plant species, including and . These plants are considered a serious threat to biodiversity and are classified as threatened species. However, plants synthesize and accumulate a variety of metabolites that are valued for their positive effects on human health.
View Article and Find Full Text PDF, alternatively known as or , is a perennial herb belonging to the Polygonaceae family. Commonly called Japanese knotweed or Asian knotweed, this plant is native to East Asia, particularly in regions such as Korea, China, and Japan. It has successfully adapted to a wide range of habitats, resulting in it being listed as a pest and invasive species in several countries in North America and Europe.
View Article and Find Full Text PDFRNA interference (RNAi) is a regulatory and protective mechanism that plays a crucial role in the growth, development, and control of plant responses to pathogens and abiotic stresses. In spray-induced gene silencing (SIGS), exogenous double-stranded RNAs (dsRNA) are used to efficiently regulate target genes via plant surface treatment. In this study, we aimed to evaluate the effect of specific exogenous dsRNAs on silencing different regions (promoter, protein-coding and intron) of the target tomato gene, encoding an R3-type MYB repressor of anthocyanin biosynthesis.
View Article and Find Full Text PDFThe application of double-stranded RNAs (dsRNAs) to plant surfaces has emerged as a promising tool for manipulating gene expression in plants and pathogens, offering new opportunities for crop improvement. While research has shown the capability of exogenous dsRNAs to silence genes, the full spectrum of their impact, particularly on the intricate network of microRNAs (miRNAs), remains largely unexplored. Here, we show that the exogenous application of chalcone synthase ()-encoding dsRNA to the rosette leaves of induced extensive alterations in the miRNA profile, while non-specific bacterial neomycin phosphotransferase II () dsRNA had a minimal effect.
View Article and Find Full Text PDFPlant surface treatment with double-stranded RNAs (dsRNAs) has gained recognition as a promising method for inducing gene silencing and combating plant pathogens. However, the regulation of endogenous plant genes by external dsRNAs has not been sufficiently investigated. Also, the effect of the simultaneous application of multiple gene-specific dsRNAs has not been analyzed.
View Article and Find Full Text PDFThe characterization of the triplet state of decatungstate (DT*) and its NIR phosphorescence with lifetimes ∼100 ns in acetonitrile allow the easy determination of rate constants that are key to understanding its role in catalysis. The absence of oxygen quenching can now be understood as the excitation energy of DT* is lower than the energy of singlet oxygen.
View Article and Find Full Text PDFStilbenes are a group of plant phenolic secondary metabolites, with -resveratrol (3,5,4'-trihydroxy--stilbene) being recognized as the most prominent and studied member. Stilbenes have a great potential for use in agriculture and medicine, as they have significant activities against plant pathogens and have valuable beneficial effects on human health. In this study, we analyzed the effects of direct application of stilbenes, stilbene precursor, and stilbene-rich extract solutions to the plant foliar surface for increasing the resistance of to various abiotic stresses (heat, cold, drought, and soil salinity).
View Article and Find Full Text PDFCalmodulin-like proteins (CMLs) are an important family of plant calcium sensor proteins that sense and decode changes in the intracellular calcium concentration in response to environmental and developmental stimuli. Nonetheless, the specific functions of individual CML family members remain largely unknown. This study aims to explore the role of the gene in the development of its high stress resistance and the production of stilbenes.
View Article and Find Full Text PDFMany grape endophytic microorganisms exhibit high potential for suppressing the development of grape diseases and stimulating grapevine growth and fitness, as well as beneficial properties of the crop. The microbiome of wild grapevines is a promising source of biocontrol agents, which can be beneficial for domesticated grapevines. Using next-generation sequencing (NGS) and classical microbiology techniques, we performed an analysis of bacterial and fungal endophytic communities of wild grapevines Rupr.
View Article and Find Full Text PDFRNA interference (RNAi) is a natural post-transcriptional regulatory mechanism that can be artificially induced by exogenous application of double-stranded RNAs (dsRNAs) to the plant surfaces. Recent studies show that it is possible to silence plant genes and change plant properties using plant RNA spraying and other approaches for dsRNA delivery. In this study, we investigated the effect of exogenous gene-specific dsRNAs on the silencing of four tomato genes encoding MYB-family transcription repressors of anthocyanin biosynthesis in the leaves of tomato L.
View Article and Find Full Text PDFCalcium serves as a crucial messenger in plant stress adaptation and developmental processes. Plants encode several multigene families of calcium sensor proteins with diverse functions in plant growth and stress responses. Several studies indicated that some calcium sensors may be involved in the regulation of secondary metabolite production in plant cells.
View Article and Find Full Text PDFGrapevine endophytic fungi have great potential for application in agriculture and represent an important source of various compounds with valuable biological activities. Wild grapevine is known to host a great number of rare and unidentified endophytes and may represent a rich repository of potential vineyard biocontrol agents. This investigation aimed to study the fungal endophytic community of wild grape Rupr.
View Article and Find Full Text PDFStilbenes are plant defense compounds known to rapidly accumulate in grapevine and some other plant species in response to microbial infection and several abiotic stresses. Stilbenes have attracted considerable attention due to valuable biological effects with multi-spectrum therapeutic application. However, there is a lack of information on natural signaling pathways and transcription factors regulating stilbene biosynthesis.
View Article and Find Full Text PDFRecent investigations have shown the possibility of artificial induction of RNA interference (RNAi) via plant foliar treatments with naked double-stranded RNA (dsRNA) to silence essential genes in plant fungal pathogens or to target viral RNAs. Furthermore, several studies have documented the downregulation of plant endogenous genes via external application of naked gene-specific dsRNAs and siRNAs to the plant surfaces. However, there are limited studies on the dsRNA processing and gene silencing mechanisms after external dsRNA application.
View Article and Find Full Text PDFThe phenomenon of RNA interference (RNAi) is widely used to develop new approaches for crop improvement and plant protection. Recent investigations show that it is possible to downregulate plant transgenes, as more prone sequences to silencing than endogenous genes, by exogenous application of double-stranded RNAs (dsRNAs) and small interfering RNAs (siRNAs). However, there are scarce data on the specificity of exogenous RNAs.
View Article and Find Full Text PDFStilbenes are plant phenolics known to rapidly accumulate in grapevine and other plants in response to injury or pathogen attack and to exhibit a great variety of healing beneficial effects. It has previously been shown that several calmodulin-like protein () genes were highly up-regulated in cell cultures of wild-growing grapevine Rupr. in response to stilbene-modulating conditions, such as stress hormones, UV-C, and stilbene precursors.
View Article and Find Full Text PDFStilbenes are plant phenolic secondary metabolites that show beneficial effects on human health and possess high antifungal activity against plant pathogens. Currently, a search for plant sources with high stilbene levels is relevant, since stilbene content in various plant species can vary substantially and is often at a low level. In this paper, the bark and wood of were analyzed for the content and composition of stilbenes and compared with other known stilbene sources.
View Article and Find Full Text PDFExcessive ultraviolet B (UV-B) irradiation is one of the most serious threats leading to severe crop production losses. It is known that secondary metabolite biosynthesis plays an important role in plant defense and forms a protective shield against excessive UV-B irradiation. The contents of stilbenes and other plant phenolics are known to sharply increase after UV-B irradiation, but there is little direct evidence for the involvement of stilbenes and other plant phenolics in plant UV-B protection.
View Article and Find Full Text PDFPlant endophytes are known to alter the profile of secondary metabolites in plant hosts. In this study, we identified the main bacterial and fungal representatives of the wild grape Rupr. microbiome and investigated a cocultivation effect of the 14 endophytes and the cell suspension on biomass accumulation and stilbene biosynthesis.
View Article and Find Full Text PDFExogenous application of double-stranded RNAs (dsRNAs) and small-interfering RNAs (siRNAs) to plant surfaces has emerged as a promising method for regulation of essential genes in plant pathogens and for plant disease protection. Yet, regulation of plant endogenous genes via external RNA treatments has not been sufficiently investigated. In this study, we targeted the genes of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, and two transcriptional factors, MYBL2 and ANAC032, negatively regulating anthocyanin biosynthesis in .
View Article and Find Full Text PDFGrapes and wines represent the most important source of edible stilbenes and other phenolic metabolites, which demonstrate a wide range of valuable biological activities. However, there is no information about the profile and content of phenolic compounds in Russian wines. We firstly analyzed phenolics (stilbenes, phenolic acids, and flavonols) in some representatives of Russian wines, including eleven red and seven white Russian wines from Fanagoria, Krasnodarsky Territory.
View Article and Find Full Text PDFThe cauliflower mosaic virus (CaMV) 35S promoter is known as the most frequently used promoter in plant biotechnology. Although it is widely considered to be a strong constitutive promoter exhibiting high transcriptional activity, the transcriptional stability of CaMV 35S has not been extensively studied. Using the model plant species Arabidopsis thaliana, this study aimed for a comprehensive expression analysis of two widely used plant transgenes, neomycin phosphotransferase II (NPTII) and enhanced green fluorescent protein (EGFP), regulated by a double CaMV 35S promoter depending on the organ type, time of day, plant age, and in response to abiotic stress conditions.
View Article and Find Full Text PDFRecent studies have revealed that foliar application of double-stranded RNAs (dsRNAs) or small-interfering RNAs (siRNAs) encoding specific genes of plant pathogens triggered RNA interference (RNAi)-mediated silencing of the gene targets. However, a limited number of reports documented silencing of plant endogenes or transgenes after direct foliar RNA application. This study analyzed the importance of physiological conditions (plant age, time of day, soil moisture, high salinity, heat, and cold stresses) and different dsRNA application means (brush spreading, spraying, infiltration, inoculation, needle injection, and pipetting) for suppression of neomycin phosphotransferase II () transgene in , as transgenes are more prone to silencing.
View Article and Find Full Text PDF