Purpose: The goal of this study was to assess the feasibility of a cost-effective prototype of a laser-based respiratory motion detection system utilizing a Leuze LDS for breath monitoring through calibration and volunteer tests.
Methods: This study was performed using the Anzai AZ-773 V and computerized imaging reference systems (CIRS) motion phantoms for calibration tests. The calibration of the laser-based respiratory motion detection system involved spatial accuracy testing, amplitude calibration, and temporal accuracy.
This article documents the work conducted in implementing the IAEA non-agreement TC regional RAS6088 project "Strengthening Education and Training Programmes for Medical Physics". Necessary information on the project was collected from the project counterparts via emails for a period of one month, starting from 21st September 2023, and verified at the Final Regional Coordination Meeting in Bangkok, Thailand from 30th October 2023 to 3rd November 2023. Sixty-three participants were trained in 5 Regional Training Courses (RTCs), with 48%, 32% and 20% in radiation therapy, diagnostic radiology, and nuclear medicine, respectively.
View Article and Find Full Text PDFBackground: This study compared the effectiveness of five deep learning models in constructing non-transit dosimetry with an a-Si electronic portal imaging device (EPID) on Varian Halcyon. Deep learning model is increasingly used to support prediction and decision-making in several fields including oncology and radiotherapy.
Materials And Methods: Forty-seven unique plans of data obtained from breast cancer patients were calculated using Eclipse treatment planning system (TPS) and extracted from DICOM format as the ground truth.
Purpose: This study aims to assess the accuracy of a modified electron beam calibration based on the IAEA TRS-398 and AAPM-TG-51 in multicenter radiotherapy.
Methods: This study was performed using the Elekta and Varian Linear Accelerator electron beams with energies of 4-22 MeV under reference conditions using cylindrical (PTW 30013, IBA FC65-G, and IBA FC65-P) and parallel-plate (PTW 34045, PTW 34001, and IBA PPC-40) chambers. The modified calibration used a cylindrical chamber and an updated based on Monte Carlo calculations, whereas TRS-398 and TG-51 used cylindrical and parallel-plate chambers for reference dosimetry.
Morphological changes can affect distribution of dose in patients. Determination of the dose distribution changes for each fraction radiotherapy can be done by relativedosimetry (IVD). This study analysed the distribution of doses per fraction based on the fluence map recorded by the electronic portal imaging device (EPID) of the patient's transit dose.
View Article and Find Full Text PDFThis study aimed to compare absolute calibration outputs based on the protocols of the International Atomic Energy Agency (IAEA) Technical Report Series (TRS)-398, the American Association of Physicists in Medicine (AAPM) Task Group (TG)-51, and modified calibration approach. The electron beam output calibration followed the IAEA TRS-398 and AAPM TG-51 protocols, both of which required cylindrical chambers and parallel plates. However, the use of cylindrical chambers is not recommended at low energies because of the large fluence-correction factor.
View Article and Find Full Text PDFRep Pract Oncol Radiother
May 2022
Background: This study aimed to evaluate the target volume and dose accuracy in intrafraction cases using 4-dimensional imaging modalities and an in-house dynamic thorax phantom. Intrafraction motion can create errors in the definition of target volumes, which can significantly affect the accuracy of radiation delivery. Motion management using 4-dimensional modalities is required to reduce the risk.
View Article and Find Full Text PDFIntensity modulated radiation therapy (IMRT) is an advanced technique in radiation therapy delivery. IMRT depends on the accuracy of the multileaf collimator during treatment. Hence, the actual dose distribution can deviate from the treatment planning system's calculation.
View Article and Find Full Text PDFBackground And Purpose: The lack of equitable access to radiotherapy (RA) linear accelerators (LINACs) is a substantial barrier to cancer care in low- and middle-income countries (LMICs). These nations are expected to bear up to 75% of cancer-related deaths globally by 2030. State-of-the-art LINACs in LMICs experience major issues in terms of robustness, with mechanical and electrical breakdowns resulting in downtimes ranging from days to months.
View Article and Find Full Text PDFPurpose: The recently worldwide standard measurement of electron beam reference dosimetry include the International Atomic Energy Agency (IAEA) Technical Report Series (TRS)-398 and Association of Physicists in Medicine (AAPM) Task Group (TG)-51 protocols. Muir et al. have modified calibration methods for electron beam calibration based on AAPM TG-51.
View Article and Find Full Text PDFBackground: The calculation of time-integrated activities (TIAs) for tumours and organs is required for dosimetry in molecular radiotherapy. The accuracy of the calculated TIAs is highly dependent on the chosen fit function. Selection of an adequate function is therefore of high importance.
View Article and Find Full Text PDFHigh-energy medical linear accelerator (Linac) has been widely used for treating cancer patients. However, with its effectiveness, high-energy linac yields an undesirable amount of neutron contamination. An MCNPX code version 2.
View Article and Find Full Text PDFPurpose: The knowledge of the contribution of anatomical and physiological parameters to interindividual pharmacokinetic differences could potentially be used to improve individualized treatment planning for radionuclide therapy. The aim of this study was therefore to identify the physiologically based pharmacokinetic (PBPK) model parameters that determine the interindividual variability of absorbed doses (ADs) to kidneys and tumor lesions in therapy with Lu-labeled PSMA-targeting radioligands.
Methods: A global sensitivity analysis (GSA) with the extended Fourier Amplitude Sensitivity Test (eFAST) algorithm was performed.
The purpose of this study is to quantify the quality of the available imaging modes for various iodine-based contrast agent concentration in paediatric cardiology. The figure of merit (FOM) was defined as the squared signal to noise ratio divided by a patient dose related parameter. An in house constructed phantom simulated a series of vessel segments with iodine concentrations from 10% or 30 mg/cc to 16% or 48 mg/cc of iodine in a blood plasma solution, all within the dimensional constraints of a paediatric patient.
View Article and Find Full Text PDFWe present an evaluation of various non-rigid registration algorithms for the purpose of compensating interfractional motion of the target volume and organs at risk areas when acquiring CBCT image data prior to irradiation. Three different deformable registration (DR) methods were used: the Demons algorithm implemented in the iPlan Software (BrainLAB AG, Feldkirchen, Germany) and two custom-developed piecewise methods using either a Normalized Correlation or a Mutual Information metric (featureletNC and featureletMI). These methods were tested on data acquired using a novel purpose-built phantom for deformable registration and clinical CT/CBCT data of prostate and lung cancer patients.
View Article and Find Full Text PDFBackground And Purpose: In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy.
Materials And Methods: The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets.
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration.
View Article and Find Full Text PDFPurpose: A new gold standard data set for validation of 2D/3D registration based on a porcine cadaver head with attached fiducial markers was presented in the first part of this article. The advantage of this new phantom is the large amount of soft tissue, which simulates realistic conditions for registration. This article tests the performance of intensity- and gradient-based algorithms for 2D/3D registration using the new phantom data set.
View Article and Find Full Text PDF