Crystal structure of the secretory chorismate mutase protein of (MtbCM) reveals presence of a proline rich region on its surface that serve as a recognition site for protein-protein interaction. This study shows that MtbCM upregulates IL-10 which favors by affecting PKCε-MKP-1-p38 MAPK signaling. MtbCM translocates to the Golgi-network where it interacts with AKAP9 via its SH3-binding domain to inhibit AKAP9-PKCε interaction and reducing PKCε phosphorylation.
View Article and Find Full Text PDFCirculating DNAs are considered as degraded DNA fragments of approximately 50-200 bp, found in blood plasma, consisting of cell-free mitochondrial and nuclear DNA. Such cell-free DNAs in the blood are found to be altered in different pathological conditions including lupus, heart disease, and malignancies. While nuclear DNAs are being used and being developed as a powerful clinical biomarker in liquid biopsies, mitochondrial DNAs (mtDNAs) are associated with inflammatory conditions including cancer progression.
View Article and Find Full Text PDFCancer cell invasion and metastasis rely on invadopodia, important extensions of the cytoskeleton that initiate degradation of the basement membrane that holds a cell in place. Transforming growth factor-β (TGF-β) is well-known to induce breast cancer migration and invasion, but the mechanism by which TGF-β signaling converts into cell motility is not completely understood. A study from Kiepas revealed a new TGF-β-dependent role for Src homology/collagen adaptor protein (SHCA) in the initiation of dynamic adhesion complexes involved in the formation of invadopodia.
View Article and Find Full Text PDFThe growth and metastasis of tumors is dependent on angiogenesis. C-type lectins are carbohydrate-binding proteins with a diverse range of functions. The C-type lectin family XIV members are transmembrane glycoproteins, and all four members of this family have been reported to regulate angiogenesis, although the detailed mechanism of action has yet to be completely elucidated.
View Article and Find Full Text PDFInt J Dev Biol
December 2016
The nucleolar protein 4-like (NOL4L) gene is present on chromosome 20 (20q11.21) in humans. Parts of this gene have been shown to fuse with RUNX1 and PAX5 in acute myeloid leukemia and acute lymphoblastic leukemia, respectively.
View Article and Find Full Text PDF