Publications by authors named "Supree Pinitsoontorn"

In this study, we developed magnetic graphene oxide composites by chemically attaching FeO nanoparticles to graphene oxide nanosheets. Characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM), confirmed the successful synthesis of FeO@GO composites with desirable properties. The resulting composites exhibited superparamagnetic behavior, solubility, and compatibility for efficient miRNA separation.

View Article and Find Full Text PDF

Activated carbon (AC) from sugarcane bagasse was prepared using dry chemical activation with KOH. It was then subjected to a high-energy ball milling (HEBM) treatment under various milling speeds (600, 1200 and 1800 rpm) to produce AC nanoparticles from micro-size particles. The AC samples after the HEBM treatment exhibited reduced particle sizes, increased mesopore volume and a rich surface oxygen content, which contribute to higher pseudocapacitance.

View Article and Find Full Text PDF

We investigated the effects of both intrinsic defects and hydrogen atom impurities on the magnetic properties of MgO samples. MgO in its pure defect-free state is known to be a nonmagnetic semiconductor. We employed density-functional theory and the Heyd-Scuseria-Ernzerhof (HSE) density functional.

View Article and Find Full Text PDF

CuFeO spinel oxide has attracted research interest because of its versatile practical applications, especially for catalysis. In this study, nanometre-sized CuFeO particles were prepared by three different methods, including nanospace confinement in SBA-15, hard template removal, and sol-gel combustion. The relationship between structure, size, magnetic behaviour, and reducibility of the catalysts was further investigated by various advanced techniques.

View Article and Find Full Text PDF

Fly ash (FA) and sugarcane bagasse ash (SCBA) are the wastes from lignite power plants and sugar industries, usually disposed of as landfills. In this research, these wastes were effectively utilized as a construction material, namely geopolymer. The effect of the SCBA (0-40 wt.

View Article and Find Full Text PDF

Engineering and synthesis of novel materials are vital for removing emerging pollutants, such as pharmaceuticals from contaminated water. In this study, a magnetic carbon nanofiber (MCF) fabricated from bacterial cellulose was tested for the adsorption of diclofenac from water. The physical and chemical properties of the synthesized adsorbent were examined by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, energy-dispersive X-ray spectroscopy (EDS), a vibrating sample magnetometer (VSM), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

The copper (Cu) substitution in barium hexaferrite (BaFeO) crystals from the sol-gel auto-combustion synthesis is demonstrated as a cost-effective pathway to achieve alterable magnetic properties. Subsequent heat treatments at 450 °C and 1050 °C result in irregularly shaped nanoparticles characterized as the M-type BaFeO with the secondary phase of hematite (α-FeO). Despite the mixed phase, the substantial coercivity of 2626 Oe and magnetization as high as 74.

View Article and Find Full Text PDF

Nanocrystalline CoPO and carbon nanofiber (CoPO/CNFs) composites with enhanced electrochemical performance were obtained by calcination after a hydrothermal process with NHCoPO∙HO/bacterial cellulose precursors under an argon atmosphere. SEM images showed that the CNFs were highly dispersed on the surfaces of CoPO microplates. The diagonal size of the CoPO plates ranged from 5 to 25 µm with thicknesses on a nanometer scale.

View Article and Find Full Text PDF

Magnetic membranes based on bacterial cellulose (BC) nanocomposites have been extensively researched. However, most magnetic nanoparticles (NPs) incorporated in the BC matrix were focused on soft magnetic phases, which limited the extensive use of magnetic BC membranes. Therefore, this work proposes a method to fabricate hard magnetic membrane based on the BC matrix and magnetically hard phase barium ferrite (BFO) NPs.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a natural polymer that has unique and interesting structural, physical and chemical properties. These characteristics make it very attractive as a starting point for several novel developments in innovative research. However, the pristine BC lacks certain properties, in particular, magnetic property, which can be imparted to BC by incorporation of several types of magnetic nanoparticles.

View Article and Find Full Text PDF

Low-cost and highly sensitive piezoelectric sensors were fabricated from bacterial cellulose (BC)/MnFeO nanocomposite films via a co-precipitation method, followed by hot-pressing. MnFeO nanoparticles were homogeneously distributed in the BC structure. The piezoelectric sensitivity measurements in the normal mode showed that the pristine BC film exhibited a sensitivity of ∼5 pC/N, whereas this value was increased to 23 pC/N for the composite film, which is comparable to the PVDF reference film.

View Article and Find Full Text PDF

Melt-electrospun polycaprolactone (PCL) fibers were fabricated by using NaCl as an additive. The size and morphology of the PCL fibers could be controlled by varying the concentration of the additive. The smallest size of the fibers (2.

View Article and Find Full Text PDF

Magnetically responsive and flexible bacterial cellulose (BC) membranes were successfully fabricated using a simple diffusion of a ferrofluid solution. BC hydrogels were either water-substituted by alcohol (BC-N) or freeze dried (BC-F) prior to their immersion in the ferrofluid. The presence of both crystalline BC and FeO phases, and the homogeneous distribution of nanoparticles (NPs) in BC nanofibrils were observed.

View Article and Find Full Text PDF

Structure, characterization, and magnetic properties of Ti-doped LaFeO3 (LaFe(1-x)Ti(x)O3, x = 0, 0.1, 0.2, 0.

View Article and Find Full Text PDF

Ferromagnetism was observed at room temperature in monodisperse CeO2 nanospheres synthesized by hydrothermal treatment of Ce(NO3)3·6H2O using polyvinylpyrrolidone as a surfactant. The structure and morphology of the products were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and field-emission scanning electron microscopy (FE-SEM). The optical properties of the nanospheres were determined using UV and visible spectroscopy and photoluminescence (PL).

View Article and Find Full Text PDF