Herein, we present a novel Origami 3D-μPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HO.
View Article and Find Full Text PDFWe report a new ready-to-use sensor for simultaneous determination of paraquat (PQ) and glyphosate (GLY) based on a graphite screen-printed electrode modified with a dual-molecularly imprinted polymer coated on a mesoporous silica-platinum core. Amino-mesoporous silica nanoparticles (MSN-NH) were first synthesized by a simple co-condensation method using tetraethyl orthosilicate and 3-aminopropyltrimethoxysilane. PtNPs were then decorated on the surface of MSN-NH by chemical reduction.
View Article and Find Full Text PDFWe propose the fabrication of a novel ready-to-use electrochemical sensor based on a screen-printed graphene paste electrode (SPGrE) modified with platinum nanoparticles and coated with a molecularly imprinted polymer (PtNPs@MIP) for sensitive and cost-effective detection of paraquat (PQ) herbicide. Successive coating of the PtNPs surface with SiO and vinyl end-groups formed the PtNPs@MIP. Next, we terminated the vinyl groups with a molecularly imprinted polymer (MIP) shell.
View Article and Find Full Text PDF