Publications by authors named "Suphalak Khamruang Marshall"

This novel radiolabeled chitosan nanoparticle, facilitated with curcumin, increased doxorubicin cytotoxicity and radiosensitivity to MG-63 osteosarcoma cells in a three-dimensional model. Delivery of the anti-epidermal growth factor receptor (EGFR) targeted carboxymethyl chitosan nanoparticles, directly labeled with NaI (ICED-N), achieved deep tumor penetration in a three-dimensional model. Of three kinetic models, the Higuchi model more closely matched the experimental curve and release profiles.

View Article and Find Full Text PDF

This study measured Tc-MDP bone scintigraphy radiation risks, as low-dose radiation exposure is a growing concern. Dosimeter measurements were taken at four positions (left lateral, right lateral, anterior, and posterior) around the patients at 30, 60, 100, and 200 cm at 0, 1.5, and 3 h.

View Article and Find Full Text PDF

Combination chemotherapy is still the standard clinical care for triple-negative breast cancer (TNBC). However, sodium iodide symporter (NIS) uptake by TNBC has opened the potential of NIS as a molecular target for radioiodine theranostic treatments. Radiolabeled poly(lactic-co-glycolic) acid nanocarrier (NINP) was developed for NIS targeted delivery of I-131 to MDA-MB-231 cells to overcome I-131 low uptake in cancer cells and rapid clearance.

View Article and Find Full Text PDF

The development of biomimetic drug delivery systems for biomedical applications has attracted significant research attention. As the use of cell membrane as a surface coating has shown to be a promising platform for several disease treatments. Cell-membrane-coated nanoparticles exhibit enhanced immunocompatibility and prolonged circulation time.

View Article and Find Full Text PDF

The systemic delivery of doxorubicin (DOX) to treat osteosarcoma requires an adequate drug concentration to be effective, but in doing so, it raises the risk of increasing organ off-target toxicity and developing drug resistance. Herein, this study reveals a multiple therapeutic nanocarrier delivery platform that overcomes off-target toxicity by providing good specificity and imparting enhanced tumor penetration in a three-dimensional (3D) human MG-63 spheroid model. By synthesizing PEG-PLGA nanoparticles by the double emulsion method, encapsulating DOX and Na131I in the inner core, and conjugating with an epidermal growth factor receptor (EGFR) antibody, it is intended to specifically target human MG-63 cells.

View Article and Find Full Text PDF

Currently, breast-cancer treatment has a number of adverse side effects and is associated with poor rates of progression-free survival. Therefore, a radiolabeled anti-EpCAM targeted biomimetic coated nanocarrier (EINP) was developed in this study to overcome some of the treatment challenges. The double emulsion method synthesized the poly(lactic-co-glycolic acid) (PLGA) nanoparticle with Na131I entrapped in the core.

View Article and Find Full Text PDF