Oxidative stress induces the adaptive response and alteration of energy metabolism across human cell types. Dermal fibroblasts shift their energy system to overload anaerobic glycolysis when exposed to sub-lethal hydrogen peroxide (HO). However, oxidative stress levels in the cells can be depleted by antioxidants, and such cellular changes can therefore be modulated.
View Article and Find Full Text PDFHuman dermal fibroblasts play an important role in skin homeostasis by producing and degrading extracellular matrix components. They have more replicative senescence when exposed to environmental and oxidative insults, resulting in human skin aging. However, this phenomenon can be mitigated by antioxidant phytochemicals.
View Article and Find Full Text PDFNitric oxide (NO) is a versatile signaling molecule which regulates fundamental cellular processes in all domains of life. However, due to the radical nature of NO it has a very short half-life that makes it challenging to trace its formation, diffusion, and degradation on the level of individual cells. Very recently, we expanded the family of genetically encoded sensors by introducing a novel class of single fluorescent protein-based NO probes-the geNOps.
View Article and Find Full Text PDFUnlabelled: Over the last decades a broad collection of sophisticated fluorescent protein-based probes was engineered with the aim to specifically monitor nitric oxide (NO), one of the most important signaling molecules in biology. Here we report and discuss the characteristics and fields of applications of currently available genetically encoded fluorescent sensors for the detection of NO and its metabolites in different cell types.
Long Abstract: Because of its radical nature and short half-life, real-time imaging of NO on the level of single cells is challenging.
Nitric Oxide (NO•) is a small radical, which mediates multiple important cellular functions in mammals, bacteria and plants. Despite the existence of a large number of methods for detecting NO• in vivo and in vitro, the real-time monitoring of NO• at the single-cell level is very challenging. The physiological or pathological effects of NO• are determined by the actual concentration and dwell time of this radical.
View Article and Find Full Text PDFMitochondrial Ca uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO) production. However, it is not entirely clear if the organelles support or counteract NO biosynthesis by taking up Ca. The objective of this study was to verify whether or not mitochondrial Ca uptake influences Ca-triggered NO generation by endothelial NO synthase (eNOS) in an immortalized endothelial cell line (EA.
View Article and Find Full Text PDFNitric oxide () is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging.
View Article and Find Full Text PDFCleistocalyx nervosum var. paniala, an edible fruit found in Northern Thailand, contains high amounts of phenolic compounds with in vitro antioxidant activity. The aqueous extract of the ripe fruit was evaluated for its safety and beneficial effects using genotoxicity and toxicity tests.
View Article and Find Full Text PDF