In snowboard freestyle disciplines, the amount of rotation is commonly determined as the sum of rotations around all board axes and is the most important indicator of the trick difficulty across all snowboard freestyle disciplines. Based on the type of rotation, tricks can be classified as flatspins, corks and flips. It is not yet known whether the type of rotation of a trick can influence the actual amount of rotation.
View Article and Find Full Text PDFThis study compared the joint kinematics between the front squat (FS) conducted in the upright (natural gravity) position and in the supine position on a short arm human centrifuge (SAHC). Male participants (N = 12) with no prior experience exercising on a centrifuge completed a FS in the upright position before (PRE) and after (POST) a FS exercise conducted on the SAHC while exposed to artificial gravity (AG). Participants completed, in randomized order, three sets of six repetitions with a load equal to body weight or 1.
View Article and Find Full Text PDFA three-dimensional motion capture system (MoCap) and the Garmin Running Dynamics Pod can be utilised to monitor a variety of dynamic parameters during running. The present investigation was designed to examine the validity of these two systems for determining ground contact times while running in place by comparing the values obtained with those provided by the bilateral force plate (gold standard). Eleven subjects completed three 20-s runs in place at self-selected rates, starting slowly, continuing at an intermediate pace, and finishing rapidly.
View Article and Find Full Text PDFAlpine skiing requires complex motor skills and fine adjustments to maintain balance in dynamic and challenging conditions. This study aimed to understand whether the balance ability in unspecific (UST) and sport-specific (SST) tasks could depend on the skiers' ranking level. The balance performance of the dominant and non-dominant limbs in the SST was also investigated.
View Article and Find Full Text PDFScand J Med Sci Sports
June 2023
The altitude differential of the specific mechanical energy, , is used to evaluate skiing performance. It is defined as the negative differential between the skier's total specific mechanical energy ( ) and the altitude of the skier's center of mass (COM). Till now, was obtained upon a mass-point (MP) model of the skier's COM, which neither considered the segmental energies of their relative movements to the COM, nor their rotational kinetic energies.
View Article and Find Full Text PDFA novel wearable smart patch can monitor various aspects of physical activity, including the dynamics of running, but like any new device developed for such applications, it must first be tested for validity. Here, we compare the step rate while running in place as measured by this smart patch to the corresponding values obtained utilizing ''gold standard'' MEMS accelerometers in combination with bilateral force plates equipped with HBM load cells, as well as the values provided by a three-dimensional motion capture system and the Garmin Dynamics Running Pod. The 15 healthy, physically active volunteers (age = 23 ± 3 years; body mass = 74 ± 17 kg, height = 176 ± 10 cm) completed three consecutive 20-s bouts of running in place, starting at low, followed by medium, and finally at high intensity, all self-chosen.
View Article and Find Full Text PDFThe ability to fabricate polymeric materials with spatially controlled physical properties has been a challenge in thermoset manufacturing. To address this challenge, this work takes advantage of a photoswitchable polymerization that selectively incorporates different monomers at a growing chain by converting from cationic to radical polymerizations through modulation of the wavelength of irradiation. By regulating the dosage and wavelength of light applied to the system, the mechanical properties of the crosslinked material can be temporally and spatially tuned.
View Article and Find Full Text PDFSki mountaineering is a rapidly growing winter sport that involves alternately climbing and descending slopes and various racing formats that differ in length and total vertical gain, as well as their distribution of downhill and uphill sections. In recent years, both participation in and media coverage of this sport have increased dramatically, contributing, at least in part, to its inclusion in the 2026 Winter Olympics in Milano-Cortina. Here, our aim has been to briefly describe the major characteristics of ski mountaineering, its physiological and biomechanical demands, equipment, and training/testing, as well as to provide some future perspectives.
View Article and Find Full Text PDFMonitoring core body temperature () during training and competitions, especially in a hot environment, can help enhance an athlete's performance, as well as lower the risk for heat stroke. Accordingly, a noninvasive sensor that allows reliable monitoring of would be highly beneficial in this context. One such novel non-invasive sensor was recently introduced onto the market (CORE, greenTEG, Rümlang, Switzerland), but, to our knowledge, a validation study of this device has not yet been reported.
View Article and Find Full Text PDFAdvancements in externally controlled polymerization methodologies have enabled the synthesis of novel polymeric structures and architectures, and they have been pivotal to the development of new photocontrolled lithographic and 3D printing technologies. In particular, the development of externally controlled ring-opening polymerization (ROP) methodologies is of great interest, as these methods provide access to novel biocompatible and biodegradable block polymer structures. Although ROPs mediated by photoacid generators have made significant contributions to the fields of lithography and microelectronics development, these methodologies rely upon catalysts with poor stability and thus poor temporal control.
View Article and Find Full Text PDFThe aim of this study was to examine chosen kinematic variables (duration of the shot, position of the centre of mass, position of the shooting hand, rotation of the shoulder axis) of successful shots and to describe differences in movement patterns in elite basketball players while increasing the distance from the basket during a jump shot. Our participants were three elite shooting guards who were all Slovenian national team and Euroleague players. They were shooting from three different distances (3.
View Article and Find Full Text PDFThe ground reaction forces (GRF) associated with competitive alpine skiing, which are relatively large, might be asymmetric during left and right turns due to asymmetries in the strength of the legs and torso and the present investigation was designed to evaluate this possibility. While skiing a symmetrical, 20-gate slalom course, the asymmetries of 9 elite alpine skiers were calculated on the basis of measurements provided by inertial motion units (IMU), a Global Navigation Satellite System and pressure insoles. In addition, specialized dynamometers were utilized to assess potential asymmetry in the strength of their legs and torso in the laboratory.
View Article and Find Full Text PDFFront Sports Act Living
February 2020
Alpine skis with wider waist widths have recently become more popular. With such skis, the contact point of the ground reaction force during ski turns is displaced more medially from beneath the sole of the outer ski, which may present an increased risk of injury. The aim of this study was to investigate knee joint kinetics, kinematics, and lower limb muscle activation as a function of changes of the ski waist width in a laboratory setting.
View Article and Find Full Text PDFReliable assessment of the performance of alpine skiers is essential. Previous studies have highlighted the potential of Global Navigation Satellite Systems (GNSS) for evaluating this performance. Accordingly, the present perspective summarizes published research concerning methodological and practical aspects of the assessment of alpine skiing performance by GNSS.
View Article and Find Full Text PDFBiomechanical studies of winter sports are challenging due to environmental conditions which cannot be mimicked in a laboratory. In this study, a methodological approach was developed merging 2D video recordings with sensor-based motion capture to investigate ski jump landings. A reference measurement was carried out in a laboratory, and subsequently, the method was exemplified in a field study by assessing the effect of a ski boot modification on landing kinematics.
View Article and Find Full Text PDFJ Sci Med Sport
August 2019
Objectives: Whole body vibrations in alpine skiing are a potential cause for frequent overuse and acute injuries. Therefore, the aim of the study was to investigate the transmissibility of vibrations from the skis to lower back and head. Attention was addressed to distinguish shocks and transient vibrations from long-lasting vibrations.
View Article and Find Full Text PDFFront Physiol
February 2019
Alpine skiing has been an Olympic event since the first Winter Games in 1936. Nowadays, skiers compete in four main events: slalom, giant slalom, super-G and downhill. Here, we present an update on the biomechanics of alpine ski racers and their equipment.
View Article and Find Full Text PDFAlpine combined was the only alpine ski racing event at the first Winter Olympic Games in 1936, but since then, slalom, giant slalom, super-G, downhill, and team events have also become Olympic events. Substantial improvements in slope preparation, design of courses, equipment, and the skills of Olympic alpine skiers have all helped this sport attain its present significance. Improved snow preparation has resulted in harder surfaces and improved equipment allows a more direct interaction between the skier and snow.
View Article and Find Full Text PDFHere, we explored the relationship between incline and start strategy during alpine skiing. Eight FIS skiers performed starts on a flat (3°) and steep (21°) incline employing five different strategies. Their times, trajectories and velocities were monitored with a GNSS system and video.
View Article and Find Full Text PDFThe development of next-generation materials is coupled with the ability to predictably and precisely synthesize polymers with well-defined structures and architectures. In this regard, the discovery of synthetic strategies that allow on demand control over monomer connectivity during polymerization would provide access to complex structures in a modular fashion and remains a grand challenge in polymer chemistry. In this Article, we report a method where monomer selectivity is controlled during the polymerization by the application of two orthogonal stimuli.
View Article and Find Full Text PDFGaining temporal control over chain growth is a key challenge in the enhancement of controlled living polymerizations. Though research on photocontrolled polymerizations is still in its infancy, it has already proven useful in the development of previously inaccessible materials. Photocontrol has now been extended to cationic polymerizations using 2,4,6-triarylpyrylium salts as photocatalysts.
View Article and Find Full Text PDF