Publications by authors named "Sunshine A Van Bael"

Leaf traits of plants worldwide are classified according to the Leaf Economics Spectrum (LES), which links leaf functional traits to evolutionary life history strategies. As a continuum ranging from thicker, tough leaves that are low in nitrogen (N) to thinner, softer, leaves that are high in N, the LES brings together physical, chemical, and ecological traits. Fungal endophytes are common foliar symbionts that occur in healthy, living leaves, especially in tropical forests.

View Article and Find Full Text PDF

Although it is becoming widely appreciated that microbes can enhance plant tolerance to environmental stress, the nature of microbial mediation of exposure responses is not well understood. We addressed this deficit by examining whether microbial mediation of plant responses to elevated salinity is contingent on the environment and factors intrinsic to the host. We evaluated the influence of contrasting environmental conditions relative to host genotype, provenance and evolution by conducting a common-garden experiment utilizing ancestral and descendant cohorts of Schoenoplectus americanus genotypes recovered from two 100+ year coastal marsh seed banks.

View Article and Find Full Text PDF

The 2010 Deepwater Horizon disaster remains one of the largest oil spills in history. This event caused significant damage to coastal ecosystems, the full extent of which has yet to be fully determined. Crude oil contains toxic heavy metals and substances such as polycyclic aromatic hydrocarbons that are detrimental to some microbial species and may be used as food and energy resources by others.

View Article and Find Full Text PDF

Plant roots assemble in two distinct microbial compartments: the rhizosphere (microbes in soil surrounding roots) and the endosphere (microbes within roots). Our knowledge of fungal community assembly in these compartments is limited, especially in wetlands. We tested the hypothesis that biotic factors would have direct effects on rhizosphere and endosphere assembly, while abiotic factors would have direct and indirect effects.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how genetic variation in the plant species Spartina alterniflora affects the surrounding soil microbial communities in a salt marsh.
  • It finds that seasonal changes significantly impact microbial diversity, with fungal communities showing a stronger correlation to plant traits than bacterial communities.
  • The findings suggest that genetic differences within a single plant species can significantly influence microbial ecosystems, potentially improving our understanding of plant-microbe interactions in these environments.
View Article and Find Full Text PDF

Despite the progress made in environmental microbiology techniques and knowledge, the succession and functional changes of the microbial community under multiple stressors are still poorly understood. This is a substantial knowledge gap as microbial communities regulate the biogeochemistry of stream ecosystems. Our study assessed the structural and temporal changes in stream fungal and bacterial communities associated with decomposing leaf litter under a multiple-stressor scenario.

View Article and Find Full Text PDF

The plant microbiome, composed of diverse interacting microorganisms, is thought to undergird host integrity and well-being. Though it is well understood that environmental perturbations like oil pollution can alter the diversity and composition of microbiomes, remarkably little is known about how disturbance alters plant-fungal associations. Using Next-Generation sequencing of the 18S rDNA internal transcribed spacer (ITS1) region, we examined outcomes of enduring oil exposure on aboveground leaf and belowground endophytic root and rhizosphere fungal communities of Spartina alterniflora, a highly valued ecosystem engineer in southeastern Louisiana marshes affected by the 2010 Deepwater Horizon accident.

View Article and Find Full Text PDF

Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area () within species but are roughly independent of across the global flora. is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan ().

View Article and Find Full Text PDF

We show the distribution of fungal operational taxonomic units (OTUs) cultured from leaves and galls of baldcypress () trees (Washburn and Van Bael, 2017) [1]. We include putative names when possible, guided by the nearest match in the NCBI databank. This data table shows only one representative of each OTU group and it's nearest match in the NCBI databank, along with information about coverage and percent match of the reads.

View Article and Find Full Text PDF

Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services.

View Article and Find Full Text PDF

Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants.

View Article and Find Full Text PDF

It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities.

View Article and Find Full Text PDF

Fungal symbionts that live asymptomatically inside plant tissues (endophytes) can influence plant-insect interactions. Recent work has shown that damage by leaf-cutting ants, a major Neotropical defoliator, is reduced to almost half in plants with high densities of endophytes. We investigated changes in the phenotype of leaves that could influence ants' behavior to result in the reduction of foliar damage.

View Article and Find Full Text PDF

Background: Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants' defense against leaf-cutting ants.

View Article and Find Full Text PDF

Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c.

View Article and Find Full Text PDF

Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C.

View Article and Find Full Text PDF

Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength.

View Article and Find Full Text PDF

Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions.

View Article and Find Full Text PDF

Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important.

View Article and Find Full Text PDF

We discuss studies of foliar endophytic fungi (FEF) and arbuscular mycorrhizal fungi (AMF) associated with Theobroma cacao in Panama. Direct, experimentally controlled comparisons of endophyte free (E-) and endophyte containing (E+) plant tissues in T. cacao show that foliar endophytes (FEF) that commonly occur in healthy host leaves enhance host defenses against foliar damage due to the pathogen (Phytophthora palmivora).

View Article and Find Full Text PDF

A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e.

View Article and Find Full Text PDF

Most forest birds include arthropods in their diet, sometimes specializing on arthropods that consume plant foliage. Experimental tests of whether bird predation on arthropods can reduce plant damage, however, are few and restricted to relatively low-diversity systems. Here, we describe an experimental test in a diverse tropical forest of whether birds indirectly defend foliage from arthropod herbivores.

View Article and Find Full Text PDF