The innate immune system shapes brain development and is implicated in neurodevelopmental diseases. It is critical to define the relevant immune cells and signals and their impact on brain circuits. In this work, we found that group 2 innate lymphoid cells (ILC2s) and their cytokine interleukin-13 (IL-13) signaled directly to inhibitory interneurons to increase inhibitory synapse density in the developing mouse brain.
View Article and Find Full Text PDFThe innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15.
View Article and Find Full Text PDFBackground: Tuberous sclerosis complex is a genetic disorder associated with high rates of intellectual disability and autism. Mice with a heterozygous null mutation of the gene () show deficits in hippocampal-dependent tasks and abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of tuberous sclerosis complex, the results presented here demonstrate a role for microglia in these deficits.
View Article and Find Full Text PDFThere is growing evidence that prenatal immune activation contributes to neuropsychiatric disorders. Here, we show that early postnatal immune activation resulted in profound impairments in social behavior, including in social memory in adult male mice heterozygous for a gene responsible for tuberous sclerosis complex (), a genetic disorder with high prevalence of autism. Early postnatal immune activation did not affect either wild-type or female mice.
View Article and Find Full Text PDFSynapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity.
View Article and Find Full Text PDF