Exosomes, small membrane vesicles secreted by a multitude of cell types, are involved in a wide range of physiological roles such as intercellular communication, membrane exchange between cells, and degradation as an alternative to lysosomes. Because of the small size of exosomes (30-100 nm) and the limitations of common separation procedures including ultracentrifugation and flow cytometry, size-based fractionation of exosomes has been challenging. In this study, we used flow field-flow fractionation (FlFFF) to fractionate exosomes according to differences in hydrodynamic diameter.
View Article and Find Full Text PDFFlow field-flow fractionation (FlFFF) has been utilized for size-based separation of rat liver mitochondria. Collected fractions of mitochondria of various sizes were examined by confocal microscopy, and mitochondria of each fraction were lysed and analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for the comparison of protein patterns in differently sized mitochondria by densitometric measurements, and for protein characterization of some gel spots with nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). FlFFF fractions of the mitochondria were also tryptically digested for shotgun proteomic characterization of mitochondrial proteins/peptides by nLC-ESI-MS-MS.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AFlFFF) has been carried out in a miniaturized channel by reducing the channel dimensions. Performance of the miniaturized AFlFFF (mAFlFFF) channel was evaluated with standard proteins and polystyrene latex spheres from nanometer to micrometer size. By reducing the channel dimension, proteins or particulate materials can be separated within a few minutes without a significant loss in resolution.
View Article and Find Full Text PDFHollow-fiber flow field-flow fractionation (HF FlFFF) was applied for the separation and size characterization of airborne particles which were collected in a municipal area and prefractionated into four different-diameter intervals >5.0, 2.5-5.
View Article and Find Full Text PDF