Publications by authors named "Sunok Moon"

Inorganic phosphate (Pi) homeostasis plays an important role in plant growth and abiotic stress tolerance. Several MYB-CC transcription factors involved in Pi homeostasis have been identified in rice (). PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) is a class II MYC-CC protein, in which the MYC-CC domain is located at the N terminus.

View Article and Find Full Text PDF

Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice () R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene , which shares high sequence similarity with .

View Article and Find Full Text PDF

Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase.

View Article and Find Full Text PDF

The plant hormone gibberellic acid (GA) is important for plant growth and productivity. Actin-related proteins (ARPs) also play central roles in plant growth, including cell elongation and development. However, the relationships between ARPs and GA signaling and biosynthesis are not fully understood.

View Article and Find Full Text PDF

Understanding pollen tube growth is critical for crop yield maintenance. The pollen tube provides a path for sperm cells for fertilization with egg cells. Cells must be subdivided into functionally and structurally distinct compartments for polar tip growth, and phosphoinositides are thought to be one of the facilitators for polarization during pollen tube growth.

View Article and Find Full Text PDF

Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.

View Article and Find Full Text PDF

Introduction: Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice.

View Article and Find Full Text PDF

To further understand the regulatory mechanism for anther dehiscence in rice, we carried out transcriptome analysis for the following two tissues: the anther wall and pollen at the anthesis stage. With the anatomical meta-expression data, in addition to these tissues, the differentially expressed genes (DEGs) between the two tissues were further refined to identify 1,717 pollen-preferred genes and 534 anther wall-preferred genes. A GUS transgenic line and RT-qPCR analysis for anther wall-preferred genes supported the fidelity of our gene candidates for further analysis.

View Article and Find Full Text PDF

The highly specialized haploid male gametophyte-pollen consist of two sperm cells and a large vegetative cell. Successful fertilization requires proper growth timing and rupture of the pollen tube until it delivers sperm cells, which occur immediately after a pollen grain hydrates. Although a tight regulation on polar cell-wall expansion of the pollen tube is fundamentally important, the underlying molecular mechanism remains largely unknown, especially in crop plants.

View Article and Find Full Text PDF

Cereal grain endosperms are an important source of human nutrition. Nuclear division in early endosperm development plays a major role in determining seed size; however, this development is not well understood. We identified the rice mutant endospermless 2 (enl2), which shows defects in the early stages of endosperm development.

View Article and Find Full Text PDF

The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis.

View Article and Find Full Text PDF

Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous.

View Article and Find Full Text PDF

Understanding the behavior of pollen during pollination is important for food security in the future. The elucidation of pollen development and growth regulation largely relies on the study of the dicotyledonous model plant . However, rice () pollen exhibits different characteristics to that of .

View Article and Find Full Text PDF

Rice (Oryza sativa L.) is a staple crop with agricultural traits that have been intensively investigated. However, despite the variety of mutant population and multi-omics data that have been generated, rice functional genomic research has been bottlenecked due to the functional redundancy in the genome.

View Article and Find Full Text PDF

Internode elongation is one of the key agronomic traits determining a plant's height and biomass. However, our understanding of the molecular mechanisms controlling internode elongation is still limited in crop plant species. Here, we report the functional identification of an atypical basic helix-loop-helix transcription factor () through gain-of-function studies using overexpression () and activation tagging () lines of rice.

View Article and Find Full Text PDF

Promoters are key components for the application of biotechnological techniques in crop plants. Reporter genes such as or have been used to test the activity of promoters for diverse applications. A huge number of T-DNAs carrying promoterless near their right borders have been inserted into the rice genome, and 105,739 flanking sequence tags from rice lines with this T-DNA insertion have been identified, establishing potential promoter trap lines for 20,899 out of 55,986 genes in the rice genome.

View Article and Find Full Text PDF

There is little known about the function of rice hexokinases (HXKs) in planta. We characterized hxk5-1, a Tos17 mutant of OsHXK5 that is up-regulated in maturing pollen, a stage when starch accumulates. Progeny analysis of self-pollinated heterozygotes of hxk5-1 and reciprocal crosses between the wild-type and heterozygotes revealed that loss of HXK5 causes male sterility.

View Article and Find Full Text PDF

In most eukaryotes, a set of conserved proteins that are collectively termed ZMM proteins (named for molecular zipper 1 [ZIP1], ZIP2, ZIP3, and ZIP4, MutS homologue 4 [MSH4] and MSH5, meiotic recombination 3, and sporulation 16 [SPO16] in yeast []) are essential for the formation of the majority of meiotic crossovers (COs). Recent reports indicated that ZIP2 acts together with SPO16 and ZIP4 to control CO formation through recognizing and stabilizing early recombination intermediates in budding yeast. However, whether this mechanism is conserved in plants is not clear.

View Article and Find Full Text PDF

Transcription factors (TFs) are an important class of regulatory molecules. Despite their importance, only a small number of genes encoding TFs have been characterized in Oryza sativa (rice), often because gene duplication and functional redundancy complicate their analysis. To address this challenge, we developed a web-based tool called the Rice Transcription Factor Phylogenomics Database (RTFDB) and demonstrate its application for predicting TF function.

View Article and Find Full Text PDF

Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice () genome.

View Article and Find Full Text PDF

Background: Root hairs are valuable in taking up nutrients and water from the rhizosphere and serving as sites of interactions with soil microorganisms. By increasing the external surface area of the roots or interacting with rhizobacteria, root hairs directly and indirectly promote plant growth and yield. Transcriptome data can be used to understand root-hair development in rice.

View Article and Find Full Text PDF

Background: Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development.

View Article and Find Full Text PDF

Plant root systems play essential roles in developmental processes, such as the absorption of water and inorganic nutrients, and structural support. Gene expression is affected by growth conditions and the genetic background of plants. To identify highly conserved root-preferred genes in rice across diverse growth conditions and varieties, we used two independent meta-anatomical expression profiles based on a large collection of Affymetrix and Agilent 44K microarray data sets available for public use.

View Article and Find Full Text PDF

This work suggests 2020 potential candidates in rice for the functional annotation of unannotated genes using meta-analysis of anatomical samples derived from microarray and RNA-seq technologies and this information will be useful to identify novel morphological agronomic traits. Although the genome of rice (Oryza sativa) has been sequenced, 14,365 genes are considered unannotated because they lack putative annotation information. According to the Rice Genome Annotation Project Database ( http://rice.

View Article and Find Full Text PDF