The wetting behavior of a surface under steam condensation depends on its intrinsic wettability and micrometer or nanoscale surface roughness. A typical superhydrophobic surface may not be suitable as a steamphobic surface because of the nucleation and growth of water inside the valleys and thus the failure to form an air-liquid-solid composite interface. Here, we present the results of steam condensation on chemically modified nanostructured carbon nanotube (CNT) mats.
View Article and Find Full Text PDFWe report the synthesis of superhydrophobic coatings for steel using carbon nanotube (CNT)-mesh structures. The CNT coating maintains its structural integrity and superhydrophobicity even after exposure to extreme thermal stresses and has excellent thermal and electrical properties. The coating can also be reinforced by optimally impregnating the CNT-mesh structure with cross-linked polymers without significantly compromising on superhydrophobicity and electrical conductivity.
View Article and Find Full Text PDFThe design of reversible adhesives requires both stickiness and the ability to remain clean from dust and other contaminants. Inspired by gecko feet, we demonstrate the self-cleaning ability of carbon nanotube-based flexible gecko tapes.
View Article and Find Full Text PDFWe have developed a synthetic gecko tape by transferring micropatterned carbon nanotube arrays onto flexible polymer tape based on the hierarchical structure found on the foot of a gecko lizard. The gecko tape can support a shear stress (36 N/cm(2)) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micrometer-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak van der Waals interactions into high shear forces.
View Article and Find Full Text PDF