Publications by authors named "Sunny D Rupwate"

Quantitative real-time polymerase chain reaction (qRT-PCR) has become the most popular choice for gene expression studies. For accurate expression analysis, it is pertinent to select a stable reference gene to normalize the data. It is now known that the expression of internal reference genes varies considerably during developmental stages and under different experimental conditions.

View Article and Find Full Text PDF

Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs.

View Article and Find Full Text PDF

Phosphoinositide-specific phospholipase C (PI-PLC) belongs to an important class of enzymes involved in signaling related to lipids. They hydrolyze a membrane-associated phospholipid, phosphatidylinositol-4,5-bisphosphate, to produce inositol-1,4,5-trisphosphate and diacylglycerol. The role of PI-PLC and the mechanism behind its functioning is well studied in animal system; however, mechanism of plant PI-PLC functioning remains largely obscure.

View Article and Find Full Text PDF

The regulation of phospholipid biosynthesis in Saccharomyces cerevisiae through cis-acting upstream activating sequence inositol (UAS(ino)) and trans-acting elements, such as the INO2-INO4 complex and OPI1 by inositol supplementation in growth is thoroughly studied. In this study, we provide evidence for the regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C (PLC) through UAS(ino) and the trans-acting elements. Gene expression analysis and radiolabelling experiments demonstrated that the overexpression of rice PLC in yeast cells altered phospholipid biosynthesis at the levels of transcriptional and enzyme activity.

View Article and Find Full Text PDF

Phosphoinositide-specific phospholipase C (PLC) is involved in Ca²⁺ mediated signalling events that lead to altered cellular status. Using various sequence-analysis methods, we identified two conserved motifs in known PLC sequences. The identified motifs are located in the C2 domain of plant PLCs and are not found in any other protein.

View Article and Find Full Text PDF