Nucleic acid therapy has emerged as a potential alternative for promoting wound healing by gene expression modification. On the other hand, protecting the nucleic acid payload from degradation, efficient bioresponsive delivery and effective transfection into cells remain challenging. A glucose-responsive gene delivery system for treating diabetic wounds would be advantageous as it would be responsive to the underlying pathology giving a regulated payload delivery with fewer side effects.
View Article and Find Full Text PDFHigh doses bone morphogenetic protein 2 (BMP-2) have resulted in a series of complications in spinal fusion. We previously established a polyelectrolyte complex (PEC) carrier system that reduces the therapeutic dose of BMP-2 in both rodent and porcine spinal fusion models. This study aimed to evaluate the safety and efficacy of the combination of bone marrow mesenchymal stem cells (BMSCs) and low dose BMP-2 delivered by PEC for bone regeneration in a porcine model of anterior lumbar interbody spinal fusion (ALIF) application.
View Article and Find Full Text PDFTendon disease constitutes an unmet clinical need and remains a critical challenge in the field of orthopaedic surgery. Innovative solutions are required to overcome the limitations of current tendon grafting approaches, and bioelectronic therapies show promise in treating musculoskeletal diseases, accelerating functional recovery through the activation of tissue regeneration-specific signaling pathways. Self-powered bioelectronic devices, particularly piezoelectric materials, represent a paradigm shift in biomedicine, negating the need for battery or external powering and complementing existing mechanotherapy to accelerate the repair processes.
View Article and Find Full Text PDFHypertrophic scarring (HS) is an intractable complication associated with cutaneous wound healing. Although transforming growth factor β1 (TGF-β1) has long been documented as a central regulatory cytokine in fibrogenesis and fibroplasia, there is currently no cure. Gene therapy is emerging as a powerful tool to attenuate the overexpression of TGF-β1 and its signaling activities.
View Article and Find Full Text PDFDuring reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries.
View Article and Find Full Text PDFBackground Context: The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in contemporary clinical application, have been reported to result in severe side effects.
Purpose: We hypothesize that the synergistic osteoinductive capacity of low-dose bone morphogenetic protein 2 (BMP-2) combined with undifferentiated bone marrow-derived stromal cells (BMSCs) is comparable to that of osteogenically differentiated BMSCs when used in a rodent model of posterolateral spinal fusion.
Study Design: Porcine lumbar interbody fusion model.
Objective: This study evaluates the effect of polyelectrolyte complex (PEC) carrier in enhancing the therapeutic efficiency and safety profile of bone morphogenetic protein-2 (BMP-2) in a large animal model.
Summary Of Background Data: Extremely large amounts of BMP-2 are administered to achieve consistent spinal fusion, which has led to complications.
Study Design: A rodent posterolateral spinal fusion model.
Objective: This study evaluated a protamine-based polyelectrolyte complex (PEC) developed to use heparin in enhancing the biological activity of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion.
Summary Of Background Data: rhBMP-2 is commonly regarded as the most potent bone-inducing molecule.
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure.
View Article and Find Full Text PDFTendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity tendon-resident cells has directed substantial research efforts towards the exploration of the therapeutic potential of various stem cells in tendon injuries and pathophysiologies.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
September 2016
Tendon injuries are increasingly prevalent around the world, accounting for more than 100 000 new clinical cases/year in the USA alone. Cell-based therapies have been proposed as a therapeutic strategy, with recent data advocating the use of tendon stem cells (TSCs) as a potential cell source with clinical relevance for tendon regeneration. However, their in vitro expansion is problematic, as they lose their multipotency and change their protein expression profile in culture.
View Article and Find Full Text PDFEfficient and therapeutically safe delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) continues to be a central issue in bone tissue engineering. Recent evidence indicates that layer-by-layer self-assembly of polyelectrolyte complexes (PECs) can be used to recreate synthetic matrix environments that would act as tuneable reservoirs for delicate biomolecules and cells. Although preliminary in vitro as well as small-animal in vivo studies support this premise, translation into clinically relevant bone defect volumes in larger animal models remains unreported.
View Article and Find Full Text PDFStudy Design: A rodent model of posterior spinal fusion.
Objective: The aim of this study was to evaluate the efficacy of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered with a heparin based polylectrolyte complex (PEC) carrier in facilitating posterior spinal fusion while concurrently minimizing seroma and heterotopic ossification.
Summary Of Background Data: rhBMP-2 is being used to augment spinal fusion.
In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C(2)C(12) cells when compared with daily administration of fresh bolus rhBMP-2.
View Article and Find Full Text PDFElectrostatic interactions between polycations and polyanions are being explored to fabricate polyelectrolyte complexes (PEC) that could entrap and regulate the release of a wide range of biomolecules. Here, we report the in vivo application of PEC shells fabricated from three different polycations: poly-l-ornithine (PLO), poly-l-arginine (PLA) and DEAE-dextran (DEAE-D) to condense heparin on the surface of alginate microbeads and further control the delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) in spinal fusion application. We observed large differences in the behavior of PEC shells fabricated from the cationic polyamino acids (PLO and PLA) when compared to the cationic polysaccharide, DEAE-D.
View Article and Find Full Text PDF