Publications by authors named "Sunniva Foerster"

Objectives: To assess the in vitro effect of select antimicrobials on the growth of and its pharmacodynamic parameters.

Methods: Time-kill assays were performed on two reference strains (ceftriaxone-resistant WHO X and ceftriaxone-susceptible WHO F) and one clinical strain (ceftriaxone-susceptible CS03307). Time-kill curves were constructed for each strain by measuring bacterial growth rates at doubling antimicrobial concentrations of ceftriaxone, ertapenem, fosfomycin and gentamicin.

View Article and Find Full Text PDF

Treatment options for gonorrhoea are scarce. Drug repurposing of bioactive molecules approved for other conditions might therefore be of value. We developed a method for wide-scale, systematic drug repurposing screen to identify molecules with activity against Neisseria gonorrhoeae and screened the Prestwick Chemical Library (1200 FDA-approved drugs).

View Article and Find Full Text PDF

Objectives: Resistance in Neisseria gonorrhoeae to all gonorrhoea therapeutic antimicrobials has emerged. Novel therapeutic antimicrobials are imperative and the first-in-class spiropyrimidinetrione zoliflodacin appears promising. Zoliflodacin could be introduced in dual antimicrobial therapies to prevent the emergence and/or spread of resistance.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is common, compromising gonorrhoea treatment internationally. Rapid characterisation of AMR strains could ensure appropriate and personalised treatment, and support identification and investigation of gonorrhoea outbreaks in nearly real-time. Whole-genome sequencing is ideal for investigation of emergence and dissemination of AMR determinants, predicting AMR, in the gonococcal population and spread of AMR strains in the human population.

View Article and Find Full Text PDF

For Neisseria gonorrhoeae susceptibility testing, Etest, comparable to agar dilution, is frequently used. In recent years, newer MIC gradient strip tests have been commercialized. However, these tests have not been appropriately evaluated for gonococci.

View Article and Find Full Text PDF

The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential.

View Article and Find Full Text PDF

Treatment of gonorrhoea is a challenge worldwide because of emergence of resistance in N. gonorrhoeae to all therapeutic antimicrobials available and novel antimicrobials are imperative. The newer-generation fluoroquinolone sitafloxacin, mostly used for respiratory tract infections in Japan, can have a high in vitro activity against gonococci.

View Article and Find Full Text PDF

Objectives: Rapid, cost-effective and objective methods for antimicrobial susceptibility testing of Neisseria gonorrhoeae would greatly enhance surveillance of antimicrobial resistance. Etest, disc diffusion and agar dilution methods are subjective, mostly laborious for large-scale testing and take ∼24 h. We aimed to develop a rapid broth microdilution assay using resazurin (blue), which is converted into resorufin (pink fluorescence) in the presence of viable bacteria.

View Article and Find Full Text PDF

Background: Gonorrhoea is a sexually transmitted infection caused by the Gram-negative bacterium Neisseria gonorrhoeae. Resistance to first-line empirical monotherapy has emerged, so robust methods are needed to evaluate the activity of existing and novel antimicrobials against the bacterium. Pharmacodynamic models describing the relationship between the concentration of antimicrobials and the minimum growth rate of the bacteria provide more detailed information than the MIC only.

View Article and Find Full Text PDF

Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N.

View Article and Find Full Text PDF